blob: 25e593c48fe9fcc62871f82df25560bfdf277ccc [file] [log] [blame]
/*
* Copyright 2018 The Hafnium Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hf/load.h"
#include <stdbool.h>
#include "hf/api.h"
#include "hf/boot_params.h"
#include "hf/dlog.h"
#include "hf/layout.h"
#include "hf/memiter.h"
#include "hf/mm.h"
#include "hf/plat/console.h"
#include "hf/static_assert.h"
#include "hf/std.h"
#include "hf/vm.h"
#include "vmapi/hf/call.h"
/**
* Copies data to an unmapped location by mapping it for write, copying the
* data, then unmapping it.
*
* The data is written so that it is available to all cores with the cache
* disabled. When switching to the partitions, the caching is initially disabled
* so the data must be available without the cache.
*/
static bool copy_to_unmapped(struct mm_stage1_locked stage1_locked, paddr_t to,
struct memiter *from_it, struct mpool *ppool)
{
const void *from = memiter_base(from_it);
size_t size = memiter_size(from_it);
paddr_t to_end = pa_add(to, size);
void *ptr;
ptr = mm_identity_map(stage1_locked, to, to_end, MM_MODE_W, ppool);
if (!ptr) {
return false;
}
memcpy_s(ptr, size, from, size);
arch_mm_write_back_dcache(ptr, size);
mm_unmap(stage1_locked, to, to_end, ppool);
return true;
}
/**
* Looks for a file in the given cpio archive. The filename is not
* null-terminated, so we use a memory iterator to represent it. The file, if
* found, is returned in the "it" argument.
*/
static bool memiter_find_file(const struct memiter *cpio,
const struct memiter *filename,
struct memiter *it)
{
const char *fname;
const void *fcontents;
size_t fsize;
struct memiter iter = *cpio;
while (cpio_next(&iter, &fname, &fcontents, &fsize)) {
if (memiter_iseq(filename, fname)) {
memiter_init(it, fcontents, fsize);
return true;
}
}
return false;
}
/**
* Looks for a file in the given cpio archive. The file, if found, is returned
* in the "it" argument.
*/
static bool find_file(const struct memiter *cpio, const char *name,
struct memiter *it)
{
const char *fname;
const void *fcontents;
size_t fsize;
struct memiter iter = *cpio;
while (cpio_next(&iter, &fname, &fcontents, &fsize)) {
if (!strcmp(fname, name)) {
memiter_init(it, fcontents, fsize);
return true;
}
}
return false;
}
/**
* Loads the primary VM.
*/
bool load_primary(struct mm_stage1_locked stage1_locked,
const struct memiter *cpio, uintreg_t kernel_arg,
struct memiter *initrd, struct mpool *ppool)
{
struct memiter it;
paddr_t primary_begin = layout_primary_begin();
if (!find_file(cpio, "vmlinuz", &it)) {
dlog("Unable to find vmlinuz\n");
return false;
}
dlog("Copying primary to %p\n", pa_addr(primary_begin));
if (!copy_to_unmapped(stage1_locked, primary_begin, &it, ppool)) {
dlog("Unable to relocate kernel for primary vm.\n");
return false;
}
if (!find_file(cpio, "initrd.img", initrd)) {
dlog("Unable to find initrd.img\n");
return false;
}
{
struct vm *vm;
struct vcpu_locked vcpu_locked;
if (!vm_init(MAX_CPUS, ppool, &vm)) {
dlog("Unable to initialise primary vm\n");
return false;
}
if (vm->id != HF_PRIMARY_VM_ID) {
dlog("Primary vm was not given correct id\n");
return false;
}
/* Map the 1TB of memory. */
/* TODO: We should do a whitelist rather than a blacklist. */
if (!mm_vm_identity_map(
&vm->ptable, pa_init(0),
pa_init(UINT64_C(1024) * 1024 * 1024 * 1024),
MM_MODE_R | MM_MODE_W | MM_MODE_X, NULL, ppool)) {
dlog("Unable to initialise memory for primary vm\n");
return false;
}
if (!mm_vm_unmap_hypervisor(&vm->ptable, ppool)) {
dlog("Unable to unmap hypervisor from primary vm\n");
return false;
}
vcpu_locked = vcpu_lock(vm_get_vcpu(vm, 0));
vcpu_on(vcpu_locked, ipa_from_pa(primary_begin), kernel_arg);
vcpu_unlock(&vcpu_locked);
}
return true;
}
/**
* Try to find a memory range of the given size within the given ranges, and
* remove it from them. Return true on success, or false if no large enough
* contiguous range is found.
*/
static bool carve_out_mem_range(struct mem_range *mem_ranges,
size_t mem_ranges_count, uint64_t size_to_find,
paddr_t *found_begin, paddr_t *found_end)
{
size_t i;
/*
* TODO(b/116191358): Consider being cleverer about how we pack VMs
* together, with a non-greedy algorithm.
*/
for (i = 0; i < mem_ranges_count; ++i) {
if (size_to_find <=
pa_difference(mem_ranges[i].begin, mem_ranges[i].end)) {
/*
* This range is big enough, take some of it from the
* end and reduce its size accordingly.
*/
*found_end = mem_ranges[i].end;
*found_begin = pa_init(pa_addr(mem_ranges[i].end) -
size_to_find);
mem_ranges[i].end = *found_begin;
return true;
}
}
return false;
}
/**
* Given arrays of memory ranges before and after memory was removed for
* secondary VMs, add the difference to the reserved ranges of the given update.
* Return true on success, or false if there would be more than MAX_MEM_RANGES
* reserved ranges after adding the new ones.
* `before` and `after` must be arrays of exactly `mem_ranges_count` elements.
*/
static bool update_reserved_ranges(struct boot_params_update *update,
const struct mem_range *before,
const struct mem_range *after,
size_t mem_ranges_count)
{
size_t i;
for (i = 0; i < mem_ranges_count; ++i) {
if (pa_addr(after[i].begin) > pa_addr(before[i].begin)) {
if (update->reserved_ranges_count >= MAX_MEM_RANGES) {
dlog("Too many reserved ranges after loading "
"secondary VMs.\n");
return false;
}
update->reserved_ranges[update->reserved_ranges_count]
.begin = before[i].begin;
update->reserved_ranges[update->reserved_ranges_count]
.end = after[i].begin;
update->reserved_ranges_count++;
}
if (pa_addr(after[i].end) < pa_addr(before[i].end)) {
if (update->reserved_ranges_count >= MAX_MEM_RANGES) {
dlog("Too many reserved ranges after loading "
"secondary VMs.\n");
return false;
}
update->reserved_ranges[update->reserved_ranges_count]
.begin = after[i].end;
update->reserved_ranges[update->reserved_ranges_count]
.end = before[i].end;
update->reserved_ranges_count++;
}
}
return true;
}
/**
* Loads all secondary VMs into the memory ranges from the given params.
* Memory reserved for the VMs is added to the `reserved_ranges` of `update`.
*/
bool load_secondary(struct mm_stage1_locked stage1_locked,
const struct manifest *manifest, const struct memiter *cpio,
const struct boot_params *params,
struct boot_params_update *update, struct mpool *ppool)
{
struct vm *primary;
struct mem_range mem_ranges_available[MAX_MEM_RANGES];
size_t i;
static_assert(
sizeof(mem_ranges_available) == sizeof(params->mem_ranges),
"mem_range arrays must be the same size for memcpy.");
static_assert(sizeof(mem_ranges_available) < 500,
"This will use too much stack, either make "
"MAX_MEM_RANGES smaller or change this.");
memcpy_s(mem_ranges_available, sizeof(mem_ranges_available),
params->mem_ranges, sizeof(params->mem_ranges));
primary = vm_find(HF_PRIMARY_VM_ID);
/* Round the last addresses down to the page size. */
for (i = 0; i < params->mem_ranges_count; ++i) {
mem_ranges_available[i].end = pa_init(align_down(
pa_addr(mem_ranges_available[i].end), PAGE_SIZE));
}
for (i = 0; i < manifest->num_vms; ++i) {
const struct manifest_vm *manifest_vm = &manifest->vm[i];
spci_vm_id_t vm_id = HF_VM_ID_OFFSET + i;
struct vm *vm;
struct vcpu *vcpu;
struct memiter kernel;
struct memiter kernel_filename;
uint64_t mem_size;
paddr_t secondary_mem_begin;
paddr_t secondary_mem_end;
ipaddr_t secondary_entry;
if (vm_id == HF_PRIMARY_VM_ID) {
continue;
}
dlog("Loading VM%d: %s.\n", (int)vm_id,
manifest_vm->debug_name);
memiter_init(&kernel_filename,
manifest_vm->secondary.kernel_filename,
strnlen_s(manifest_vm->secondary.kernel_filename,
MANIFEST_MAX_STRING_LENGTH));
if (!memiter_find_file(cpio, &kernel_filename, &kernel)) {
dlog("Could not find kernel file \"%s\".\n",
manifest_vm->secondary.kernel_filename);
continue;
}
mem_size = align_up(manifest_vm->secondary.mem_size, PAGE_SIZE);
if (mem_size < memiter_size(&kernel)) {
dlog("Kernel is larger than available memory\n");
continue;
}
if (!carve_out_mem_range(mem_ranges_available,
params->mem_ranges_count, mem_size,
&secondary_mem_begin,
&secondary_mem_end)) {
dlog("Not enough memory (%u bytes)\n", mem_size);
continue;
}
if (!copy_to_unmapped(stage1_locked, secondary_mem_begin,
&kernel, ppool)) {
dlog("Unable to copy kernel\n");
continue;
}
if (!vm_init(manifest_vm->secondary.vcpu_count, ppool, &vm)) {
dlog("Unable to initialise VM\n");
continue;
}
/* Grant the VM access to the memory. */
if (!mm_vm_identity_map(&vm->ptable, secondary_mem_begin,
secondary_mem_end,
MM_MODE_R | MM_MODE_W | MM_MODE_X,
&secondary_entry, ppool)) {
dlog("Unable to initialise memory\n");
continue;
}
/* Deny the primary VM access to this memory. */
if (!mm_vm_unmap(&primary->ptable, secondary_mem_begin,
secondary_mem_end, ppool)) {
dlog("Unable to unmap secondary VM from primary VM\n");
return false;
}
dlog("Loaded with %u vcpus, entry at %#x\n",
manifest_vm->secondary.vcpu_count,
pa_addr(secondary_mem_begin));
vcpu = vm_get_vcpu(vm, 0);
vcpu_secondary_reset_and_start(
vcpu, secondary_entry,
pa_difference(secondary_mem_begin, secondary_mem_end));
}
/*
* Add newly reserved areas to update params by looking at the
* difference between the available ranges from the original params and
* the updated mem_ranges_available. We assume that the number and order
* of available ranges is the same, i.e. we don't remove any ranges
* above only make them smaller.
*/
return update_reserved_ranges(update, params->mem_ranges,
mem_ranges_available,
params->mem_ranges_count);
}