blob: db01612e167d8c6435d236c9b43bf37f6dc5ed88 [file] [log] [blame]
/*
* Copyright 2019 The Hafnium Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hf/manifest.h"
#include "hf/addr.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/fdt.h"
#include "hf/static_assert.h"
#include "hf/std.h"
#define TRY(expr) \
do { \
enum manifest_return_code ret_code = (expr); \
if (ret_code != MANIFEST_SUCCESS) { \
return ret_code; \
} \
} while (0)
#define VM_NAME_BUF_SIZE (2 + 5 + 1) /* "vm" + number + null terminator */
static_assert(MAX_VMS <= 99999, "Insufficient VM_NAME_BUF_SIZE");
static_assert(HF_TEE_VM_ID > MAX_VMS,
"TrustZone VM ID clashes with normal VM range.");
/**
* Generates a string with the two letters "vm" followed by an integer.
* Assumes `buf` is of size VM_NAME_BUF_SIZE.
*/
static const char *generate_vm_node_name(char *buf, spci_vm_id_t vm_id)
{
static const char *digits = "0123456789";
char *ptr = buf + VM_NAME_BUF_SIZE;
*(--ptr) = '\0';
do {
*(--ptr) = digits[vm_id % 10];
vm_id /= 10;
} while (vm_id);
*(--ptr) = 'm';
*(--ptr) = 'v';
return ptr;
}
/**
* Read a boolean property: true if present; false if not. If present, the value
* of the property must be empty else it is considered malformed.
*/
static enum manifest_return_code read_bool(const struct fdt_node *node,
const char *property, bool *out)
{
const char *data;
uint32_t size;
bool present = fdt_read_property(node, property, &data, &size);
if (present && size != 0) {
return MANIFEST_ERROR_MALFORMED_BOOLEAN;
}
*out = present;
return MANIFEST_SUCCESS;
}
static enum manifest_return_code read_string(const struct fdt_node *node,
const char *property,
struct string *out)
{
const char *data;
uint32_t size;
if (!fdt_read_property(node, property, &data, &size)) {
return MANIFEST_ERROR_PROPERTY_NOT_FOUND;
}
switch (string_init(out, data, size)) {
case STRING_SUCCESS:
return MANIFEST_SUCCESS;
case STRING_ERROR_INVALID_INPUT:
return MANIFEST_ERROR_MALFORMED_STRING;
case STRING_ERROR_TOO_LONG:
return MANIFEST_ERROR_STRING_TOO_LONG;
}
}
static enum manifest_return_code read_optional_string(
const struct fdt_node *node, const char *property, struct string *out)
{
enum manifest_return_code ret;
ret = read_string(node, property, out);
if (ret == MANIFEST_ERROR_PROPERTY_NOT_FOUND) {
string_init_empty(out);
ret = MANIFEST_SUCCESS;
}
return ret;
}
static enum manifest_return_code read_uint64(const struct fdt_node *node,
const char *property,
uint64_t *out)
{
const char *data;
uint32_t size;
if (!fdt_read_property(node, property, &data, &size)) {
return MANIFEST_ERROR_PROPERTY_NOT_FOUND;
}
if (!fdt_parse_number(data, size, out)) {
return MANIFEST_ERROR_MALFORMED_INTEGER;
}
return MANIFEST_SUCCESS;
}
static enum manifest_return_code read_uint16(const struct fdt_node *node,
const char *property,
uint16_t *out)
{
uint64_t value;
TRY(read_uint64(node, property, &value));
if (value > UINT16_MAX) {
return MANIFEST_ERROR_INTEGER_OVERFLOW;
}
*out = (uint16_t)value;
return MANIFEST_SUCCESS;
}
struct uint32list_iter {
struct memiter mem_it;
};
static enum manifest_return_code read_optional_uint32list(
const struct fdt_node *node, const char *property,
struct uint32list_iter *out)
{
const char *data;
uint32_t size;
if (!fdt_read_property(node, property, &data, &size)) {
memiter_init(&out->mem_it, NULL, 0);
return MANIFEST_SUCCESS;
}
if ((size % sizeof(uint32_t)) != 0) {
return MANIFEST_ERROR_MALFORMED_INTEGER_LIST;
}
memiter_init(&out->mem_it, data, size);
return MANIFEST_SUCCESS;
}
/**
* Represents the value of property whose type is a list of strings. These are
* encoded as one contiguous byte buffer with NULL-separated entries.
*/
struct stringlist_iter {
struct memiter mem_it;
};
static enum manifest_return_code read_stringlist(const struct fdt_node *node,
const char *property,
struct stringlist_iter *out)
{
const char *data;
uint32_t size;
if (!fdt_read_property(node, property, &data, &size)) {
return MANIFEST_ERROR_PROPERTY_NOT_FOUND;
}
/*
* Require that the value ends with a NULL terminator. Other NULL
* characters separate the string list entries.
*/
if (data[size - 1] != '\0') {
return MANIFEST_ERROR_MALFORMED_STRING_LIST;
}
memiter_init(&out->mem_it, data, size - 1);
return MANIFEST_SUCCESS;
}
static bool uint32list_has_next(const struct uint32list_iter *list)
{
return memiter_size(&list->mem_it) > 0;
}
static uint32_t uint32list_get_next(struct uint32list_iter *list)
{
const char *mem_base = memiter_base(&list->mem_it);
uint64_t num;
CHECK(uint32list_has_next(list));
if (!fdt_parse_number(mem_base, sizeof(uint32_t), &num)) {
return MANIFEST_ERROR_MALFORMED_INTEGER;
}
memiter_advance(&list->mem_it, sizeof(uint32_t));
return num;
}
static bool stringlist_has_next(const struct stringlist_iter *list)
{
return memiter_size(&list->mem_it) > 0;
}
static void stringlist_get_next(struct stringlist_iter *list,
struct memiter *out)
{
const char *mem_base = memiter_base(&list->mem_it);
size_t mem_size = memiter_size(&list->mem_it);
const char *null_term;
CHECK(stringlist_has_next(list));
null_term = memchr(mem_base, '\0', mem_size);
if (null_term == NULL) {
/*
* NULL terminator not found, this is the last entry.
* Set entry memiter to the entire byte range and advance list
* memiter to the end of the byte range.
*/
memiter_init(out, mem_base, mem_size);
memiter_advance(&list->mem_it, mem_size);
} else {
/*
* Found NULL terminator. Set entry memiter to byte range
* [base, null) and move list memiter past the terminator.
*/
size_t entry_size = null_term - mem_base;
memiter_init(out, mem_base, entry_size);
memiter_advance(&list->mem_it, entry_size + 1);
}
}
static bool stringlist_contains(const struct stringlist_iter *list,
const char *str)
{
struct stringlist_iter it = *list;
struct memiter entry;
while (stringlist_has_next(&it)) {
stringlist_get_next(&it, &entry);
if (memiter_iseq(&entry, str)) {
return true;
}
}
return false;
}
static enum manifest_return_code parse_vm(struct fdt_node *node,
struct manifest_vm *vm,
spci_vm_id_t vm_id)
{
struct uint32list_iter smcs;
TRY(read_string(node, "debug_name", &vm->debug_name));
TRY(read_optional_string(node, "kernel_filename",
&vm->kernel_filename));
TRY(read_optional_uint32list(node, "smc_whitelist", &smcs));
while (uint32list_has_next(&smcs) &&
vm->smc_whitelist.smc_count < MAX_SMCS) {
vm->smc_whitelist.smcs[vm->smc_whitelist.smc_count++] =
uint32list_get_next(&smcs);
}
if (uint32list_has_next(&smcs)) {
dlog_warning("%s SMC whitelist too long.\n", vm->debug_name);
}
TRY(read_bool(node, "smc_whitelist_permissive",
&vm->smc_whitelist.permissive));
if (vm_id == HF_PRIMARY_VM_ID) {
TRY(read_optional_string(node, "ramdisk_filename",
&vm->primary.ramdisk_filename));
} else {
TRY(read_uint64(node, "mem_size", &vm->secondary.mem_size));
TRY(read_uint16(node, "vcpu_count", &vm->secondary.vcpu_count));
}
return MANIFEST_SUCCESS;
}
/**
* Parse manifest from FDT.
*/
enum manifest_return_code manifest_init(struct manifest *manifest,
struct memiter *manifest_fdt)
{
char vm_name_buf[VM_NAME_BUF_SIZE];
const struct fdt_header *fdt;
struct fdt_node hyp_node;
struct stringlist_iter compatible_list;
size_t i = 0;
bool found_primary_vm = false;
memset_s(manifest, sizeof(*manifest), 0, sizeof(*manifest));
fdt = (const struct fdt_header *)memiter_base(manifest_fdt);
if (memiter_size(manifest_fdt) != fdt_total_size(fdt)) {
return MANIFEST_ERROR_FILE_SIZE;
}
/* Find hypervisor node. */
if (!fdt_root_node(&hyp_node, fdt)) {
return MANIFEST_ERROR_NO_ROOT_NODE;
}
if (!fdt_find_child(&hyp_node, "")) {
return MANIFEST_ERROR_NO_ROOT_NODE;
}
if (!fdt_find_child(&hyp_node, "hypervisor")) {
return MANIFEST_ERROR_NO_HYPERVISOR_FDT_NODE;
}
/* Check "compatible" property. */
TRY(read_stringlist(&hyp_node, "compatible", &compatible_list));
if (!stringlist_contains(&compatible_list, "hafnium,hafnium")) {
return MANIFEST_ERROR_NOT_COMPATIBLE;
}
/* Iterate over reserved VM IDs and check no such nodes exist. */
for (i = 0; i < HF_VM_ID_OFFSET; i++) {
spci_vm_id_t vm_id = (spci_vm_id_t)i;
struct fdt_node vm_node = hyp_node;
const char *vm_name = generate_vm_node_name(vm_name_buf, vm_id);
if (fdt_find_child(&vm_node, vm_name)) {
return MANIFEST_ERROR_RESERVED_VM_ID;
}
}
/* Iterate over VM nodes until we find one that does not exist. */
for (i = 0; i <= MAX_VMS; ++i) {
spci_vm_id_t vm_id = HF_VM_ID_OFFSET + i;
struct fdt_node vm_node = hyp_node;
const char *vm_name = generate_vm_node_name(vm_name_buf, vm_id);
if (!fdt_find_child(&vm_node, vm_name)) {
break;
}
if (i == MAX_VMS) {
return MANIFEST_ERROR_TOO_MANY_VMS;
}
if (vm_id == HF_PRIMARY_VM_ID) {
CHECK(found_primary_vm == false); /* sanity check */
found_primary_vm = true;
}
manifest->vm_count = i + 1;
TRY(parse_vm(&vm_node, &manifest->vm[i], vm_id));
}
if (!found_primary_vm) {
return MANIFEST_ERROR_NO_PRIMARY_VM;
}
return MANIFEST_SUCCESS;
}
const char *manifest_strerror(enum manifest_return_code ret_code)
{
switch (ret_code) {
case MANIFEST_SUCCESS:
return "Success";
case MANIFEST_ERROR_FILE_SIZE:
return "Total size in header does not match file size";
case MANIFEST_ERROR_NO_ROOT_NODE:
return "Could not find root node in manifest";
case MANIFEST_ERROR_NO_HYPERVISOR_FDT_NODE:
return "Could not find \"hypervisor\" node in manifest";
case MANIFEST_ERROR_NOT_COMPATIBLE:
return "Hypervisor manifest entry not compatible with Hafnium";
case MANIFEST_ERROR_RESERVED_VM_ID:
return "Manifest defines a VM with a reserved ID";
case MANIFEST_ERROR_NO_PRIMARY_VM:
return "Manifest does not contain a primary VM entry";
case MANIFEST_ERROR_TOO_MANY_VMS:
return "Manifest specifies more VMs than Hafnium has "
"statically allocated space for";
case MANIFEST_ERROR_PROPERTY_NOT_FOUND:
return "Property not found";
case MANIFEST_ERROR_MALFORMED_STRING:
return "Malformed string property";
case MANIFEST_ERROR_STRING_TOO_LONG:
return "String too long";
case MANIFEST_ERROR_MALFORMED_STRING_LIST:
return "Malformed string list property";
case MANIFEST_ERROR_MALFORMED_INTEGER:
return "Malformed integer property";
case MANIFEST_ERROR_INTEGER_OVERFLOW:
return "Integer overflow";
case MANIFEST_ERROR_MALFORMED_INTEGER_LIST:
return "Malformed integer list property";
case MANIFEST_ERROR_MALFORMED_BOOLEAN:
return "Malformed boolean property";
}
panic("Unexpected manifest return code.");
}