| //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the classes used to generate code from scalar expressions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H |
| #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h" |
| #include "llvm/Analysis/TargetFolder.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/ValueHandle.h" |
| |
| namespace llvm { |
| class TargetTransformInfo; |
| |
| /// Return true if the given expression is safe to expand in the sense that |
| /// all materialized values are safe to speculate anywhere their operands are |
| /// defined. |
| bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE); |
| |
| /// Return true if the given expression is safe to expand in the sense that |
| /// all materialized values are defined and safe to speculate at the specified |
| /// location and their operands are defined at this location. |
| bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint, |
| ScalarEvolution &SE); |
| |
| /// This class uses information about analyze scalars to rewrite expressions |
| /// in canonical form. |
| /// |
| /// Clients should create an instance of this class when rewriting is needed, |
| /// and destroy it when finished to allow the release of the associated |
| /// memory. |
| class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> { |
| ScalarEvolution &SE; |
| const DataLayout &DL; |
| |
| // New instructions receive a name to identify them with the current pass. |
| const char* IVName; |
| |
| // InsertedExpressions caches Values for reuse, so must track RAUW. |
| DenseMap<std::pair<const SCEV *, Instruction *>, TrackingVH<Value>> |
| InsertedExpressions; |
| |
| // InsertedValues only flags inserted instructions so needs no RAUW. |
| DenseSet<AssertingVH<Value>> InsertedValues; |
| DenseSet<AssertingVH<Value>> InsertedPostIncValues; |
| |
| /// A memoization of the "relevant" loop for a given SCEV. |
| DenseMap<const SCEV *, const Loop *> RelevantLoops; |
| |
| /// Addrecs referring to any of the given loops are expanded in post-inc |
| /// mode. For example, expanding {1,+,1}<L> in post-inc mode returns the add |
| /// instruction that adds one to the phi for {0,+,1}<L>, as opposed to a new |
| /// phi starting at 1. This is only supported in non-canonical mode. |
| PostIncLoopSet PostIncLoops; |
| |
| /// When this is non-null, addrecs expanded in the loop it indicates should |
| /// be inserted with increments at IVIncInsertPos. |
| const Loop *IVIncInsertLoop; |
| |
| /// When expanding addrecs in the IVIncInsertLoop loop, insert the IV |
| /// increment at this position. |
| Instruction *IVIncInsertPos; |
| |
| /// Phis that complete an IV chain. Reuse |
| DenseSet<AssertingVH<PHINode>> ChainedPhis; |
| |
| /// When true, expressions are expanded in "canonical" form. In particular, |
| /// addrecs are expanded as arithmetic based on a canonical induction |
| /// variable. When false, expression are expanded in a more literal form. |
| bool CanonicalMode; |
| |
| /// When invoked from LSR, the expander is in "strength reduction" mode. The |
| /// only difference is that phi's are only reused if they are already in |
| /// "expanded" form. |
| bool LSRMode; |
| |
| typedef IRBuilder<TargetFolder> BuilderType; |
| BuilderType Builder; |
| |
| // RAII object that stores the current insertion point and restores it when |
| // the object is destroyed. This includes the debug location. Duplicated |
| // from InsertPointGuard to add SetInsertPoint() which is used to updated |
| // InsertPointGuards stack when insert points are moved during SCEV |
| // expansion. |
| class SCEVInsertPointGuard { |
| IRBuilderBase &Builder; |
| AssertingVH<BasicBlock> Block; |
| BasicBlock::iterator Point; |
| DebugLoc DbgLoc; |
| SCEVExpander *SE; |
| |
| SCEVInsertPointGuard(const SCEVInsertPointGuard &) = delete; |
| SCEVInsertPointGuard &operator=(const SCEVInsertPointGuard &) = delete; |
| |
| public: |
| SCEVInsertPointGuard(IRBuilderBase &B, SCEVExpander *SE) |
| : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()), |
| DbgLoc(B.getCurrentDebugLocation()), SE(SE) { |
| SE->InsertPointGuards.push_back(this); |
| } |
| |
| ~SCEVInsertPointGuard() { |
| // These guards should always created/destroyed in FIFO order since they |
| // are used to guard lexically scoped blocks of code in |
| // ScalarEvolutionExpander. |
| assert(SE->InsertPointGuards.back() == this); |
| SE->InsertPointGuards.pop_back(); |
| Builder.restoreIP(IRBuilderBase::InsertPoint(Block, Point)); |
| Builder.SetCurrentDebugLocation(DbgLoc); |
| } |
| |
| BasicBlock::iterator GetInsertPoint() const { return Point; } |
| void SetInsertPoint(BasicBlock::iterator I) { Point = I; } |
| }; |
| |
| /// Stack of pointers to saved insert points, used to keep insert points |
| /// consistent when instructions are moved. |
| SmallVector<SCEVInsertPointGuard *, 8> InsertPointGuards; |
| |
| #ifndef NDEBUG |
| const char *DebugType; |
| #endif |
| |
| friend struct SCEVVisitor<SCEVExpander, Value*>; |
| |
| public: |
| /// Construct a SCEVExpander in "canonical" mode. |
| explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL, |
| const char *name) |
| : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr), |
| IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false), |
| Builder(se.getContext(), TargetFolder(DL)) { |
| #ifndef NDEBUG |
| DebugType = ""; |
| #endif |
| } |
| |
| ~SCEVExpander() { |
| // Make sure the insert point guard stack is consistent. |
| assert(InsertPointGuards.empty()); |
| } |
| |
| #ifndef NDEBUG |
| void setDebugType(const char* s) { DebugType = s; } |
| #endif |
| |
| /// Erase the contents of the InsertedExpressions map so that users trying |
| /// to expand the same expression into multiple BasicBlocks or different |
| /// places within the same BasicBlock can do so. |
| void clear() { |
| InsertedExpressions.clear(); |
| InsertedValues.clear(); |
| InsertedPostIncValues.clear(); |
| ChainedPhis.clear(); |
| } |
| |
| /// Return true for expressions that may incur non-trivial cost to evaluate |
| /// at runtime. |
| /// |
| /// At is an optional parameter which specifies point in code where user is |
| /// going to expand this expression. Sometimes this knowledge can lead to a |
| /// more accurate cost estimation. |
| bool isHighCostExpansion(const SCEV *Expr, Loop *L, |
| const Instruction *At = nullptr) { |
| SmallPtrSet<const SCEV *, 8> Processed; |
| return isHighCostExpansionHelper(Expr, L, At, Processed); |
| } |
| |
| /// This method returns the canonical induction variable of the specified |
| /// type for the specified loop (inserting one if there is none). A |
| /// canonical induction variable starts at zero and steps by one on each |
| /// iteration. |
| PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty); |
| |
| /// Return the induction variable increment's IV operand. |
| Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos, |
| bool allowScale); |
| |
| /// Utility for hoisting an IV increment. |
| bool hoistIVInc(Instruction *IncV, Instruction *InsertPos); |
| |
| /// replace congruent phis with their most canonical representative. Return |
| /// the number of phis eliminated. |
| unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT, |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts, |
| const TargetTransformInfo *TTI = nullptr); |
| |
| /// Insert code to directly compute the specified SCEV expression into the |
| /// program. The inserted code is inserted into the specified block. |
| Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I); |
| |
| /// Insert code to directly compute the specified SCEV expression into the |
| /// program. The inserted code is inserted into the SCEVExpander's current |
| /// insertion point. If a type is specified, the result will be expanded to |
| /// have that type, with a cast if necessary. |
| Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr); |
| |
| |
| /// Generates a code sequence that evaluates this predicate. The inserted |
| /// instructions will be at position \p Loc. The result will be of type i1 |
| /// and will have a value of 0 when the predicate is false and 1 otherwise. |
| Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc); |
| |
| /// A specialized variant of expandCodeForPredicate, handling the case when |
| /// we are expanding code for a SCEVEqualPredicate. |
| Value *expandEqualPredicate(const SCEVEqualPredicate *Pred, |
| Instruction *Loc); |
| |
| /// Generates code that evaluates if the \p AR expression will overflow. |
| Value *generateOverflowCheck(const SCEVAddRecExpr *AR, Instruction *Loc, |
| bool Signed); |
| |
| /// A specialized variant of expandCodeForPredicate, handling the case when |
| /// we are expanding code for a SCEVWrapPredicate. |
| Value *expandWrapPredicate(const SCEVWrapPredicate *P, Instruction *Loc); |
| |
| /// A specialized variant of expandCodeForPredicate, handling the case when |
| /// we are expanding code for a SCEVUnionPredicate. |
| Value *expandUnionPredicate(const SCEVUnionPredicate *Pred, |
| Instruction *Loc); |
| |
| /// Set the current IV increment loop and position. |
| void setIVIncInsertPos(const Loop *L, Instruction *Pos) { |
| assert(!CanonicalMode && |
| "IV increment positions are not supported in CanonicalMode"); |
| IVIncInsertLoop = L; |
| IVIncInsertPos = Pos; |
| } |
| |
| /// Enable post-inc expansion for addrecs referring to the given |
| /// loops. Post-inc expansion is only supported in non-canonical mode. |
| void setPostInc(const PostIncLoopSet &L) { |
| assert(!CanonicalMode && |
| "Post-inc expansion is not supported in CanonicalMode"); |
| PostIncLoops = L; |
| } |
| |
| /// Disable all post-inc expansion. |
| void clearPostInc() { |
| PostIncLoops.clear(); |
| |
| // When we change the post-inc loop set, cached expansions may no |
| // longer be valid. |
| InsertedPostIncValues.clear(); |
| } |
| |
| /// Disable the behavior of expanding expressions in canonical form rather |
| /// than in a more literal form. Non-canonical mode is useful for late |
| /// optimization passes. |
| void disableCanonicalMode() { CanonicalMode = false; } |
| |
| void enableLSRMode() { LSRMode = true; } |
| |
| /// Set the current insertion point. This is useful if multiple calls to |
| /// expandCodeFor() are going to be made with the same insert point and the |
| /// insert point may be moved during one of the expansions (e.g. if the |
| /// insert point is not a block terminator). |
| void setInsertPoint(Instruction *IP) { |
| assert(IP); |
| Builder.SetInsertPoint(IP); |
| } |
| |
| /// Clear the current insertion point. This is useful if the instruction |
| /// that had been serving as the insertion point may have been deleted. |
| void clearInsertPoint() { |
| Builder.ClearInsertionPoint(); |
| } |
| |
| /// Return true if the specified instruction was inserted by the code |
| /// rewriter. If so, the client should not modify the instruction. |
| bool isInsertedInstruction(Instruction *I) const { |
| return InsertedValues.count(I) || InsertedPostIncValues.count(I); |
| } |
| |
| void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); } |
| |
| /// Try to find existing LLVM IR value for S available at the point At. |
| Value *getExactExistingExpansion(const SCEV *S, const Instruction *At, |
| Loop *L); |
| |
| /// Try to find the ValueOffsetPair for S. The function is mainly used to |
| /// check whether S can be expanded cheaply. If this returns a non-None |
| /// value, we know we can codegen the `ValueOffsetPair` into a suitable |
| /// expansion identical with S so that S can be expanded cheaply. |
| /// |
| /// L is a hint which tells in which loop to look for the suitable value. |
| /// On success return value which is equivalent to the expanded S at point |
| /// At. Return nullptr if value was not found. |
| /// |
| /// Note that this function does not perform an exhaustive search. I.e if it |
| /// didn't find any value it does not mean that there is no such value. |
| /// |
| Optional<ScalarEvolution::ValueOffsetPair> |
| getRelatedExistingExpansion(const SCEV *S, const Instruction *At, Loop *L); |
| |
| private: |
| LLVMContext &getContext() const { return SE.getContext(); } |
| |
| /// Recursive helper function for isHighCostExpansion. |
| bool isHighCostExpansionHelper(const SCEV *S, Loop *L, |
| const Instruction *At, |
| SmallPtrSetImpl<const SCEV *> &Processed); |
| |
| /// Insert the specified binary operator, doing a small amount of work to |
| /// avoid inserting an obviously redundant operation. |
| Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS); |
| |
| /// Arrange for there to be a cast of V to Ty at IP, reusing an existing |
| /// cast if a suitable one exists, moving an existing cast if a suitable one |
| /// exists but isn't in the right place, or creating a new one. |
| Value *ReuseOrCreateCast(Value *V, Type *Ty, |
| Instruction::CastOps Op, |
| BasicBlock::iterator IP); |
| |
| /// Insert a cast of V to the specified type, which must be possible with a |
| /// noop cast, doing what we can to share the casts. |
| Value *InsertNoopCastOfTo(Value *V, Type *Ty); |
| |
| /// Expand a SCEVAddExpr with a pointer type into a GEP instead of using |
| /// ptrtoint+arithmetic+inttoptr. |
| Value *expandAddToGEP(const SCEV *const *op_begin, |
| const SCEV *const *op_end, |
| PointerType *PTy, Type *Ty, Value *V); |
| Value *expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty, Value *V); |
| |
| /// Find a previous Value in ExprValueMap for expand. |
| ScalarEvolution::ValueOffsetPair |
| FindValueInExprValueMap(const SCEV *S, const Instruction *InsertPt); |
| |
| Value *expand(const SCEV *S); |
| |
| /// Determine the most "relevant" loop for the given SCEV. |
| const Loop *getRelevantLoop(const SCEV *); |
| |
| Value *visitConstant(const SCEVConstant *S) { |
| return S->getValue(); |
| } |
| |
| Value *visitTruncateExpr(const SCEVTruncateExpr *S); |
| |
| Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S); |
| |
| Value *visitSignExtendExpr(const SCEVSignExtendExpr *S); |
| |
| Value *visitAddExpr(const SCEVAddExpr *S); |
| |
| Value *visitMulExpr(const SCEVMulExpr *S); |
| |
| Value *visitUDivExpr(const SCEVUDivExpr *S); |
| |
| Value *visitAddRecExpr(const SCEVAddRecExpr *S); |
| |
| Value *visitSMaxExpr(const SCEVSMaxExpr *S); |
| |
| Value *visitUMaxExpr(const SCEVUMaxExpr *S); |
| |
| Value *visitUnknown(const SCEVUnknown *S) { |
| return S->getValue(); |
| } |
| |
| void rememberInstruction(Value *I); |
| |
| bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); |
| |
| bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L); |
| |
| Value *expandAddRecExprLiterally(const SCEVAddRecExpr *); |
| PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, |
| const Loop *L, |
| Type *ExpandTy, |
| Type *IntTy, |
| Type *&TruncTy, |
| bool &InvertStep); |
| Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L, |
| Type *ExpandTy, Type *IntTy, bool useSubtract); |
| |
| void hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist, |
| Instruction *Pos, PHINode *LoopPhi); |
| |
| void fixupInsertPoints(Instruction *I); |
| }; |
| } |
| |
| #endif |