| //===- Graph.h - PBQP Graph -------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // PBQP Graph class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_PBQP_GRAPH_H |
| #define LLVM_CODEGEN_PBQP_GRAPH_H |
| |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <limits> |
| #include <vector> |
| |
| namespace llvm { |
| namespace PBQP { |
| |
| class GraphBase { |
| public: |
| using NodeId = unsigned; |
| using EdgeId = unsigned; |
| |
| /// Returns a value representing an invalid (non-existent) node. |
| static NodeId invalidNodeId() { |
| return std::numeric_limits<NodeId>::max(); |
| } |
| |
| /// Returns a value representing an invalid (non-existent) edge. |
| static EdgeId invalidEdgeId() { |
| return std::numeric_limits<EdgeId>::max(); |
| } |
| }; |
| |
| /// PBQP Graph class. |
| /// Instances of this class describe PBQP problems. |
| /// |
| template <typename SolverT> |
| class Graph : public GraphBase { |
| private: |
| using CostAllocator = typename SolverT::CostAllocator; |
| |
| public: |
| using RawVector = typename SolverT::RawVector; |
| using RawMatrix = typename SolverT::RawMatrix; |
| using Vector = typename SolverT::Vector; |
| using Matrix = typename SolverT::Matrix; |
| using VectorPtr = typename CostAllocator::VectorPtr; |
| using MatrixPtr = typename CostAllocator::MatrixPtr; |
| using NodeMetadata = typename SolverT::NodeMetadata; |
| using EdgeMetadata = typename SolverT::EdgeMetadata; |
| using GraphMetadata = typename SolverT::GraphMetadata; |
| |
| private: |
| class NodeEntry { |
| public: |
| using AdjEdgeList = std::vector<EdgeId>; |
| using AdjEdgeIdx = AdjEdgeList::size_type; |
| using AdjEdgeItr = AdjEdgeList::const_iterator; |
| |
| NodeEntry(VectorPtr Costs) : Costs(std::move(Costs)) {} |
| |
| static AdjEdgeIdx getInvalidAdjEdgeIdx() { |
| return std::numeric_limits<AdjEdgeIdx>::max(); |
| } |
| |
| AdjEdgeIdx addAdjEdgeId(EdgeId EId) { |
| AdjEdgeIdx Idx = AdjEdgeIds.size(); |
| AdjEdgeIds.push_back(EId); |
| return Idx; |
| } |
| |
| void removeAdjEdgeId(Graph &G, NodeId ThisNId, AdjEdgeIdx Idx) { |
| // Swap-and-pop for fast removal. |
| // 1) Update the adj index of the edge currently at back(). |
| // 2) Move last Edge down to Idx. |
| // 3) pop_back() |
| // If Idx == size() - 1 then the setAdjEdgeIdx and swap are |
| // redundant, but both operations are cheap. |
| G.getEdge(AdjEdgeIds.back()).setAdjEdgeIdx(ThisNId, Idx); |
| AdjEdgeIds[Idx] = AdjEdgeIds.back(); |
| AdjEdgeIds.pop_back(); |
| } |
| |
| const AdjEdgeList& getAdjEdgeIds() const { return AdjEdgeIds; } |
| |
| VectorPtr Costs; |
| NodeMetadata Metadata; |
| |
| private: |
| AdjEdgeList AdjEdgeIds; |
| }; |
| |
| class EdgeEntry { |
| public: |
| EdgeEntry(NodeId N1Id, NodeId N2Id, MatrixPtr Costs) |
| : Costs(std::move(Costs)) { |
| NIds[0] = N1Id; |
| NIds[1] = N2Id; |
| ThisEdgeAdjIdxs[0] = NodeEntry::getInvalidAdjEdgeIdx(); |
| ThisEdgeAdjIdxs[1] = NodeEntry::getInvalidAdjEdgeIdx(); |
| } |
| |
| void connectToN(Graph &G, EdgeId ThisEdgeId, unsigned NIdx) { |
| assert(ThisEdgeAdjIdxs[NIdx] == NodeEntry::getInvalidAdjEdgeIdx() && |
| "Edge already connected to NIds[NIdx]."); |
| NodeEntry &N = G.getNode(NIds[NIdx]); |
| ThisEdgeAdjIdxs[NIdx] = N.addAdjEdgeId(ThisEdgeId); |
| } |
| |
| void connect(Graph &G, EdgeId ThisEdgeId) { |
| connectToN(G, ThisEdgeId, 0); |
| connectToN(G, ThisEdgeId, 1); |
| } |
| |
| void setAdjEdgeIdx(NodeId NId, typename NodeEntry::AdjEdgeIdx NewIdx) { |
| if (NId == NIds[0]) |
| ThisEdgeAdjIdxs[0] = NewIdx; |
| else { |
| assert(NId == NIds[1] && "Edge not connected to NId"); |
| ThisEdgeAdjIdxs[1] = NewIdx; |
| } |
| } |
| |
| void disconnectFromN(Graph &G, unsigned NIdx) { |
| assert(ThisEdgeAdjIdxs[NIdx] != NodeEntry::getInvalidAdjEdgeIdx() && |
| "Edge not connected to NIds[NIdx]."); |
| NodeEntry &N = G.getNode(NIds[NIdx]); |
| N.removeAdjEdgeId(G, NIds[NIdx], ThisEdgeAdjIdxs[NIdx]); |
| ThisEdgeAdjIdxs[NIdx] = NodeEntry::getInvalidAdjEdgeIdx(); |
| } |
| |
| void disconnectFrom(Graph &G, NodeId NId) { |
| if (NId == NIds[0]) |
| disconnectFromN(G, 0); |
| else { |
| assert(NId == NIds[1] && "Edge does not connect NId"); |
| disconnectFromN(G, 1); |
| } |
| } |
| |
| NodeId getN1Id() const { return NIds[0]; } |
| NodeId getN2Id() const { return NIds[1]; } |
| |
| MatrixPtr Costs; |
| EdgeMetadata Metadata; |
| |
| private: |
| NodeId NIds[2]; |
| typename NodeEntry::AdjEdgeIdx ThisEdgeAdjIdxs[2]; |
| }; |
| |
| // ----- MEMBERS ----- |
| |
| GraphMetadata Metadata; |
| CostAllocator CostAlloc; |
| SolverT *Solver = nullptr; |
| |
| using NodeVector = std::vector<NodeEntry>; |
| using FreeNodeVector = std::vector<NodeId>; |
| NodeVector Nodes; |
| FreeNodeVector FreeNodeIds; |
| |
| using EdgeVector = std::vector<EdgeEntry>; |
| using FreeEdgeVector = std::vector<EdgeId>; |
| EdgeVector Edges; |
| FreeEdgeVector FreeEdgeIds; |
| |
| Graph(const Graph &Other) {} |
| |
| // ----- INTERNAL METHODS ----- |
| |
| NodeEntry &getNode(NodeId NId) { |
| assert(NId < Nodes.size() && "Out of bound NodeId"); |
| return Nodes[NId]; |
| } |
| const NodeEntry &getNode(NodeId NId) const { |
| assert(NId < Nodes.size() && "Out of bound NodeId"); |
| return Nodes[NId]; |
| } |
| |
| EdgeEntry& getEdge(EdgeId EId) { return Edges[EId]; } |
| const EdgeEntry& getEdge(EdgeId EId) const { return Edges[EId]; } |
| |
| NodeId addConstructedNode(NodeEntry N) { |
| NodeId NId = 0; |
| if (!FreeNodeIds.empty()) { |
| NId = FreeNodeIds.back(); |
| FreeNodeIds.pop_back(); |
| Nodes[NId] = std::move(N); |
| } else { |
| NId = Nodes.size(); |
| Nodes.push_back(std::move(N)); |
| } |
| return NId; |
| } |
| |
| EdgeId addConstructedEdge(EdgeEntry E) { |
| assert(findEdge(E.getN1Id(), E.getN2Id()) == invalidEdgeId() && |
| "Attempt to add duplicate edge."); |
| EdgeId EId = 0; |
| if (!FreeEdgeIds.empty()) { |
| EId = FreeEdgeIds.back(); |
| FreeEdgeIds.pop_back(); |
| Edges[EId] = std::move(E); |
| } else { |
| EId = Edges.size(); |
| Edges.push_back(std::move(E)); |
| } |
| |
| EdgeEntry &NE = getEdge(EId); |
| |
| // Add the edge to the adjacency sets of its nodes. |
| NE.connect(*this, EId); |
| return EId; |
| } |
| |
| void operator=(const Graph &Other) {} |
| |
| public: |
| using AdjEdgeItr = typename NodeEntry::AdjEdgeItr; |
| |
| class NodeItr { |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = NodeId; |
| using difference_type = int; |
| using pointer = NodeId *; |
| using reference = NodeId &; |
| |
| NodeItr(NodeId CurNId, const Graph &G) |
| : CurNId(CurNId), EndNId(G.Nodes.size()), FreeNodeIds(G.FreeNodeIds) { |
| this->CurNId = findNextInUse(CurNId); // Move to first in-use node id |
| } |
| |
| bool operator==(const NodeItr &O) const { return CurNId == O.CurNId; } |
| bool operator!=(const NodeItr &O) const { return !(*this == O); } |
| NodeItr& operator++() { CurNId = findNextInUse(++CurNId); return *this; } |
| NodeId operator*() const { return CurNId; } |
| |
| private: |
| NodeId findNextInUse(NodeId NId) const { |
| while (NId < EndNId && is_contained(FreeNodeIds, NId)) { |
| ++NId; |
| } |
| return NId; |
| } |
| |
| NodeId CurNId, EndNId; |
| const FreeNodeVector &FreeNodeIds; |
| }; |
| |
| class EdgeItr { |
| public: |
| EdgeItr(EdgeId CurEId, const Graph &G) |
| : CurEId(CurEId), EndEId(G.Edges.size()), FreeEdgeIds(G.FreeEdgeIds) { |
| this->CurEId = findNextInUse(CurEId); // Move to first in-use edge id |
| } |
| |
| bool operator==(const EdgeItr &O) const { return CurEId == O.CurEId; } |
| bool operator!=(const EdgeItr &O) const { return !(*this == O); } |
| EdgeItr& operator++() { CurEId = findNextInUse(++CurEId); return *this; } |
| EdgeId operator*() const { return CurEId; } |
| |
| private: |
| EdgeId findNextInUse(EdgeId EId) const { |
| while (EId < EndEId && is_contained(FreeEdgeIds, EId)) { |
| ++EId; |
| } |
| return EId; |
| } |
| |
| EdgeId CurEId, EndEId; |
| const FreeEdgeVector &FreeEdgeIds; |
| }; |
| |
| class NodeIdSet { |
| public: |
| NodeIdSet(const Graph &G) : G(G) {} |
| |
| NodeItr begin() const { return NodeItr(0, G); } |
| NodeItr end() const { return NodeItr(G.Nodes.size(), G); } |
| |
| bool empty() const { return G.Nodes.empty(); } |
| |
| typename NodeVector::size_type size() const { |
| return G.Nodes.size() - G.FreeNodeIds.size(); |
| } |
| |
| private: |
| const Graph& G; |
| }; |
| |
| class EdgeIdSet { |
| public: |
| EdgeIdSet(const Graph &G) : G(G) {} |
| |
| EdgeItr begin() const { return EdgeItr(0, G); } |
| EdgeItr end() const { return EdgeItr(G.Edges.size(), G); } |
| |
| bool empty() const { return G.Edges.empty(); } |
| |
| typename NodeVector::size_type size() const { |
| return G.Edges.size() - G.FreeEdgeIds.size(); |
| } |
| |
| private: |
| const Graph& G; |
| }; |
| |
| class AdjEdgeIdSet { |
| public: |
| AdjEdgeIdSet(const NodeEntry &NE) : NE(NE) {} |
| |
| typename NodeEntry::AdjEdgeItr begin() const { |
| return NE.getAdjEdgeIds().begin(); |
| } |
| |
| typename NodeEntry::AdjEdgeItr end() const { |
| return NE.getAdjEdgeIds().end(); |
| } |
| |
| bool empty() const { return NE.getAdjEdgeIds().empty(); } |
| |
| typename NodeEntry::AdjEdgeList::size_type size() const { |
| return NE.getAdjEdgeIds().size(); |
| } |
| |
| private: |
| const NodeEntry &NE; |
| }; |
| |
| /// Construct an empty PBQP graph. |
| Graph() = default; |
| |
| /// Construct an empty PBQP graph with the given graph metadata. |
| Graph(GraphMetadata Metadata) : Metadata(std::move(Metadata)) {} |
| |
| /// Get a reference to the graph metadata. |
| GraphMetadata& getMetadata() { return Metadata; } |
| |
| /// Get a const-reference to the graph metadata. |
| const GraphMetadata& getMetadata() const { return Metadata; } |
| |
| /// Lock this graph to the given solver instance in preparation |
| /// for running the solver. This method will call solver.handleAddNode for |
| /// each node in the graph, and handleAddEdge for each edge, to give the |
| /// solver an opportunity to set up any requried metadata. |
| void setSolver(SolverT &S) { |
| assert(!Solver && "Solver already set. Call unsetSolver()."); |
| Solver = &S; |
| for (auto NId : nodeIds()) |
| Solver->handleAddNode(NId); |
| for (auto EId : edgeIds()) |
| Solver->handleAddEdge(EId); |
| } |
| |
| /// Release from solver instance. |
| void unsetSolver() { |
| assert(Solver && "Solver not set."); |
| Solver = nullptr; |
| } |
| |
| /// Add a node with the given costs. |
| /// @param Costs Cost vector for the new node. |
| /// @return Node iterator for the added node. |
| template <typename OtherVectorT> |
| NodeId addNode(OtherVectorT Costs) { |
| // Get cost vector from the problem domain |
| VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
| NodeId NId = addConstructedNode(NodeEntry(AllocatedCosts)); |
| if (Solver) |
| Solver->handleAddNode(NId); |
| return NId; |
| } |
| |
| /// Add a node bypassing the cost allocator. |
| /// @param Costs Cost vector ptr for the new node (must be convertible to |
| /// VectorPtr). |
| /// @return Node iterator for the added node. |
| /// |
| /// This method allows for fast addition of a node whose costs don't need |
| /// to be passed through the cost allocator. The most common use case for |
| /// this is when duplicating costs from an existing node (when using a |
| /// pooling allocator). These have already been uniqued, so we can avoid |
| /// re-constructing and re-uniquing them by attaching them directly to the |
| /// new node. |
| template <typename OtherVectorPtrT> |
| NodeId addNodeBypassingCostAllocator(OtherVectorPtrT Costs) { |
| NodeId NId = addConstructedNode(NodeEntry(Costs)); |
| if (Solver) |
| Solver->handleAddNode(NId); |
| return NId; |
| } |
| |
| /// Add an edge between the given nodes with the given costs. |
| /// @param N1Id First node. |
| /// @param N2Id Second node. |
| /// @param Costs Cost matrix for new edge. |
| /// @return Edge iterator for the added edge. |
| template <typename OtherVectorT> |
| EdgeId addEdge(NodeId N1Id, NodeId N2Id, OtherVectorT Costs) { |
| assert(getNodeCosts(N1Id).getLength() == Costs.getRows() && |
| getNodeCosts(N2Id).getLength() == Costs.getCols() && |
| "Matrix dimensions mismatch."); |
| // Get cost matrix from the problem domain. |
| MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
| EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, AllocatedCosts)); |
| if (Solver) |
| Solver->handleAddEdge(EId); |
| return EId; |
| } |
| |
| /// Add an edge bypassing the cost allocator. |
| /// @param N1Id First node. |
| /// @param N2Id Second node. |
| /// @param Costs Cost matrix for new edge. |
| /// @return Edge iterator for the added edge. |
| /// |
| /// This method allows for fast addition of an edge whose costs don't need |
| /// to be passed through the cost allocator. The most common use case for |
| /// this is when duplicating costs from an existing edge (when using a |
| /// pooling allocator). These have already been uniqued, so we can avoid |
| /// re-constructing and re-uniquing them by attaching them directly to the |
| /// new edge. |
| template <typename OtherMatrixPtrT> |
| NodeId addEdgeBypassingCostAllocator(NodeId N1Id, NodeId N2Id, |
| OtherMatrixPtrT Costs) { |
| assert(getNodeCosts(N1Id).getLength() == Costs->getRows() && |
| getNodeCosts(N2Id).getLength() == Costs->getCols() && |
| "Matrix dimensions mismatch."); |
| // Get cost matrix from the problem domain. |
| EdgeId EId = addConstructedEdge(EdgeEntry(N1Id, N2Id, Costs)); |
| if (Solver) |
| Solver->handleAddEdge(EId); |
| return EId; |
| } |
| |
| /// Returns true if the graph is empty. |
| bool empty() const { return NodeIdSet(*this).empty(); } |
| |
| NodeIdSet nodeIds() const { return NodeIdSet(*this); } |
| EdgeIdSet edgeIds() const { return EdgeIdSet(*this); } |
| |
| AdjEdgeIdSet adjEdgeIds(NodeId NId) { return AdjEdgeIdSet(getNode(NId)); } |
| |
| /// Get the number of nodes in the graph. |
| /// @return Number of nodes in the graph. |
| unsigned getNumNodes() const { return NodeIdSet(*this).size(); } |
| |
| /// Get the number of edges in the graph. |
| /// @return Number of edges in the graph. |
| unsigned getNumEdges() const { return EdgeIdSet(*this).size(); } |
| |
| /// Set a node's cost vector. |
| /// @param NId Node to update. |
| /// @param Costs New costs to set. |
| template <typename OtherVectorT> |
| void setNodeCosts(NodeId NId, OtherVectorT Costs) { |
| VectorPtr AllocatedCosts = CostAlloc.getVector(std::move(Costs)); |
| if (Solver) |
| Solver->handleSetNodeCosts(NId, *AllocatedCosts); |
| getNode(NId).Costs = AllocatedCosts; |
| } |
| |
| /// Get a VectorPtr to a node's cost vector. Rarely useful - use |
| /// getNodeCosts where possible. |
| /// @param NId Node id. |
| /// @return VectorPtr to node cost vector. |
| /// |
| /// This method is primarily useful for duplicating costs quickly by |
| /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
| /// getNodeCosts when dealing with node cost values. |
| const VectorPtr& getNodeCostsPtr(NodeId NId) const { |
| return getNode(NId).Costs; |
| } |
| |
| /// Get a node's cost vector. |
| /// @param NId Node id. |
| /// @return Node cost vector. |
| const Vector& getNodeCosts(NodeId NId) const { |
| return *getNodeCostsPtr(NId); |
| } |
| |
| NodeMetadata& getNodeMetadata(NodeId NId) { |
| return getNode(NId).Metadata; |
| } |
| |
| const NodeMetadata& getNodeMetadata(NodeId NId) const { |
| return getNode(NId).Metadata; |
| } |
| |
| typename NodeEntry::AdjEdgeList::size_type getNodeDegree(NodeId NId) const { |
| return getNode(NId).getAdjEdgeIds().size(); |
| } |
| |
| /// Update an edge's cost matrix. |
| /// @param EId Edge id. |
| /// @param Costs New cost matrix. |
| template <typename OtherMatrixT> |
| void updateEdgeCosts(EdgeId EId, OtherMatrixT Costs) { |
| MatrixPtr AllocatedCosts = CostAlloc.getMatrix(std::move(Costs)); |
| if (Solver) |
| Solver->handleUpdateCosts(EId, *AllocatedCosts); |
| getEdge(EId).Costs = AllocatedCosts; |
| } |
| |
| /// Get a MatrixPtr to a node's cost matrix. Rarely useful - use |
| /// getEdgeCosts where possible. |
| /// @param EId Edge id. |
| /// @return MatrixPtr to edge cost matrix. |
| /// |
| /// This method is primarily useful for duplicating costs quickly by |
| /// bypassing the cost allocator. See addNodeBypassingCostAllocator. Prefer |
| /// getEdgeCosts when dealing with edge cost values. |
| const MatrixPtr& getEdgeCostsPtr(EdgeId EId) const { |
| return getEdge(EId).Costs; |
| } |
| |
| /// Get an edge's cost matrix. |
| /// @param EId Edge id. |
| /// @return Edge cost matrix. |
| const Matrix& getEdgeCosts(EdgeId EId) const { |
| return *getEdge(EId).Costs; |
| } |
| |
| EdgeMetadata& getEdgeMetadata(EdgeId EId) { |
| return getEdge(EId).Metadata; |
| } |
| |
| const EdgeMetadata& getEdgeMetadata(EdgeId EId) const { |
| return getEdge(EId).Metadata; |
| } |
| |
| /// Get the first node connected to this edge. |
| /// @param EId Edge id. |
| /// @return The first node connected to the given edge. |
| NodeId getEdgeNode1Id(EdgeId EId) const { |
| return getEdge(EId).getN1Id(); |
| } |
| |
| /// Get the second node connected to this edge. |
| /// @param EId Edge id. |
| /// @return The second node connected to the given edge. |
| NodeId getEdgeNode2Id(EdgeId EId) const { |
| return getEdge(EId).getN2Id(); |
| } |
| |
| /// Get the "other" node connected to this edge. |
| /// @param EId Edge id. |
| /// @param NId Node id for the "given" node. |
| /// @return The iterator for the "other" node connected to this edge. |
| NodeId getEdgeOtherNodeId(EdgeId EId, NodeId NId) { |
| EdgeEntry &E = getEdge(EId); |
| if (E.getN1Id() == NId) { |
| return E.getN2Id(); |
| } // else |
| return E.getN1Id(); |
| } |
| |
| /// Get the edge connecting two nodes. |
| /// @param N1Id First node id. |
| /// @param N2Id Second node id. |
| /// @return An id for edge (N1Id, N2Id) if such an edge exists, |
| /// otherwise returns an invalid edge id. |
| EdgeId findEdge(NodeId N1Id, NodeId N2Id) { |
| for (auto AEId : adjEdgeIds(N1Id)) { |
| if ((getEdgeNode1Id(AEId) == N2Id) || |
| (getEdgeNode2Id(AEId) == N2Id)) { |
| return AEId; |
| } |
| } |
| return invalidEdgeId(); |
| } |
| |
| /// Remove a node from the graph. |
| /// @param NId Node id. |
| void removeNode(NodeId NId) { |
| if (Solver) |
| Solver->handleRemoveNode(NId); |
| NodeEntry &N = getNode(NId); |
| // TODO: Can this be for-each'd? |
| for (AdjEdgeItr AEItr = N.adjEdgesBegin(), |
| AEEnd = N.adjEdgesEnd(); |
| AEItr != AEEnd;) { |
| EdgeId EId = *AEItr; |
| ++AEItr; |
| removeEdge(EId); |
| } |
| FreeNodeIds.push_back(NId); |
| } |
| |
| /// Disconnect an edge from the given node. |
| /// |
| /// Removes the given edge from the adjacency list of the given node. |
| /// This operation leaves the edge in an 'asymmetric' state: It will no |
| /// longer appear in an iteration over the given node's (NId's) edges, but |
| /// will appear in an iteration over the 'other', unnamed node's edges. |
| /// |
| /// This does not correspond to any normal graph operation, but exists to |
| /// support efficient PBQP graph-reduction based solvers. It is used to |
| /// 'effectively' remove the unnamed node from the graph while the solver |
| /// is performing the reduction. The solver will later call reconnectNode |
| /// to restore the edge in the named node's adjacency list. |
| /// |
| /// Since the degree of a node is the number of connected edges, |
| /// disconnecting an edge from a node 'u' will cause the degree of 'u' to |
| /// drop by 1. |
| /// |
| /// A disconnected edge WILL still appear in an iteration over the graph |
| /// edges. |
| /// |
| /// A disconnected edge should not be removed from the graph, it should be |
| /// reconnected first. |
| /// |
| /// A disconnected edge can be reconnected by calling the reconnectEdge |
| /// method. |
| void disconnectEdge(EdgeId EId, NodeId NId) { |
| if (Solver) |
| Solver->handleDisconnectEdge(EId, NId); |
| |
| EdgeEntry &E = getEdge(EId); |
| E.disconnectFrom(*this, NId); |
| } |
| |
| /// Convenience method to disconnect all neighbours from the given |
| /// node. |
| void disconnectAllNeighborsFromNode(NodeId NId) { |
| for (auto AEId : adjEdgeIds(NId)) |
| disconnectEdge(AEId, getEdgeOtherNodeId(AEId, NId)); |
| } |
| |
| /// Re-attach an edge to its nodes. |
| /// |
| /// Adds an edge that had been previously disconnected back into the |
| /// adjacency set of the nodes that the edge connects. |
| void reconnectEdge(EdgeId EId, NodeId NId) { |
| EdgeEntry &E = getEdge(EId); |
| E.connectTo(*this, EId, NId); |
| if (Solver) |
| Solver->handleReconnectEdge(EId, NId); |
| } |
| |
| /// Remove an edge from the graph. |
| /// @param EId Edge id. |
| void removeEdge(EdgeId EId) { |
| if (Solver) |
| Solver->handleRemoveEdge(EId); |
| EdgeEntry &E = getEdge(EId); |
| E.disconnect(); |
| FreeEdgeIds.push_back(EId); |
| Edges[EId].invalidate(); |
| } |
| |
| /// Remove all nodes and edges from the graph. |
| void clear() { |
| Nodes.clear(); |
| FreeNodeIds.clear(); |
| Edges.clear(); |
| FreeEdgeIds.clear(); |
| } |
| }; |
| |
| } // end namespace PBQP |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_PBQP_GRAPH_HPP |