blob: 49805ce193ed07e4bd58fe75cfcab4f8419acb8d [file] [log] [blame]
//===--------------------- TaskPool.h ---------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef utility_TaskPool_h_
#define utility_TaskPool_h_
#include "llvm/ADT/STLExtras.h"
#include <functional>
#include <future>
#include <list>
#include <memory>
#include <mutex>
#include <type_traits>
namespace lldb_private {
// Global TaskPool class for running tasks in parallel on a set of worker
// thread created the first time the task pool is used. The TaskPool provide no
// guarantee about the order the task will be run and about what tasks will run
// in parallel. None of the task added to the task pool should block on
// something (mutex, future, condition variable) what will be set only by the
// completion of an other task on the task pool as they may run on the same
// thread sequentally.
class TaskPool {
public:
// Add a new task to the task pool and return a std::future belonging to the
// newly created task. The caller of this function has to wait on the future
// for this task to complete.
template <typename F, typename... Args>
static std::future<typename std::result_of<F(Args...)>::type>
AddTask(F &&f, Args &&... args);
// Run all of the specified tasks on the task pool and wait until all of them
// are finished before returning. This method is intended to be used for
// small number tasks where listing them as function arguments is acceptable.
// For running large number of tasks you should use AddTask for each task and
// then call wait() on each returned future.
template <typename... T> static void RunTasks(T &&... tasks);
private:
TaskPool() = delete;
template <typename... T> struct RunTaskImpl;
static void AddTaskImpl(std::function<void()> &&task_fn);
};
template <typename F, typename... Args>
std::future<typename std::result_of<F(Args...)>::type>
TaskPool::AddTask(F &&f, Args &&... args) {
auto task_sp = std::make_shared<
std::packaged_task<typename std::result_of<F(Args...)>::type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));
AddTaskImpl([task_sp]() { (*task_sp)(); });
return task_sp->get_future();
}
template <typename... T> void TaskPool::RunTasks(T &&... tasks) {
RunTaskImpl<T...>::Run(std::forward<T>(tasks)...);
}
template <typename Head, typename... Tail>
struct TaskPool::RunTaskImpl<Head, Tail...> {
static void Run(Head &&h, Tail &&... t) {
auto f = AddTask(std::forward<Head>(h));
RunTaskImpl<Tail...>::Run(std::forward<Tail>(t)...);
f.wait();
}
};
template <> struct TaskPool::RunTaskImpl<> {
static void Run() {}
};
// Run 'func' on every value from begin .. end-1. Each worker will grab
// 'batch_size' numbers at a time to work on, so for very fast functions, batch
// should be large enough to avoid too much cache line contention.
void TaskMapOverInt(size_t begin, size_t end,
const llvm::function_ref<void(size_t)> &func);
unsigned GetHardwareConcurrencyHint();
} // namespace lldb_private
#endif // #ifndef utility_TaskPool_h_