blob: dbb723e9d3693a9c246b996b4f4073d74606d2f0 [file] [log] [blame]
//===-- SymbolFile.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef liblldb_SymbolFile_h_
#define liblldb_SymbolFile_h_
#include "lldb/Core/PluginInterface.h"
#include "lldb/Symbol/CompilerDecl.h"
#include "lldb/Symbol/CompilerDeclContext.h"
#include "lldb/Symbol/CompilerType.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/SourceModule.h"
#include "lldb/Symbol/Type.h"
#include "lldb/lldb-private.h"
#include "llvm/ADT/DenseSet.h"
#include <mutex>
#if defined(LLDB_CONFIGURATION_DEBUG)
#define ASSERT_MODULE_LOCK(expr) (expr->AssertModuleLock())
#else
#define ASSERT_MODULE_LOCK(expr) ((void)0)
#endif
namespace lldb_private {
class SymbolFile : public PluginInterface {
public:
// Symbol file ability bits.
//
// Each symbol file can claim to support one or more symbol file abilities.
// These get returned from SymbolFile::GetAbilities(). These help us to
// determine which plug-in will be best to load the debug information found
// in files.
enum Abilities {
CompileUnits = (1u << 0),
LineTables = (1u << 1),
Functions = (1u << 2),
Blocks = (1u << 3),
GlobalVariables = (1u << 4),
LocalVariables = (1u << 5),
VariableTypes = (1u << 6),
kAllAbilities = ((1u << 7) - 1u)
};
static SymbolFile *FindPlugin(ObjectFile *obj_file);
// Constructors and Destructors
SymbolFile(ObjectFile *obj_file)
: m_obj_file(obj_file), m_abilities(0), m_calculated_abilities(false) {}
~SymbolFile() override {}
/// Get a mask of what this symbol file supports for the object file
/// that it was constructed with.
///
/// Each symbol file gets to respond with a mask of abilities that
/// it supports for each object file. This happens when we are
/// trying to figure out which symbol file plug-in will get used
/// for a given object file. The plug-in that responds with the
/// best mix of "SymbolFile::Abilities" bits set, will get chosen to
/// be the symbol file parser. This allows each plug-in to check for
/// sections that contain data a symbol file plug-in would need. For
/// example the DWARF plug-in requires DWARF sections in a file that
/// contain debug information. If the DWARF plug-in doesn't find
/// these sections, it won't respond with many ability bits set, and
/// we will probably fall back to the symbol table SymbolFile plug-in
/// which uses any information in the symbol table. Also, plug-ins
/// might check for some specific symbols in a symbol table in the
/// case where the symbol table contains debug information (STABS
/// and COFF). Not a lot of work should happen in these functions
/// as the plug-in might not get selected due to another plug-in
/// having more abilities. Any initialization work should be saved
/// for "void SymbolFile::InitializeObject()" which will get called
/// on the SymbolFile object with the best set of abilities.
///
/// \return
/// A uint32_t mask containing bits from the SymbolFile::Abilities
/// enumeration. Any bits that are set represent an ability that
/// this symbol plug-in can parse from the object file.
uint32_t GetAbilities() {
if (!m_calculated_abilities) {
m_abilities = CalculateAbilities();
m_calculated_abilities = true;
}
return m_abilities;
}
virtual uint32_t CalculateAbilities() = 0;
/// Symbols file subclasses should override this to return the Module that
/// owns the TypeSystem that this symbol file modifies type information in.
virtual std::recursive_mutex &GetModuleMutex() const;
/// Initialize the SymbolFile object.
///
/// The SymbolFile object with the best set of abilities (detected
/// in "uint32_t SymbolFile::GetAbilities()) will have this function
/// called if it is chosen to parse an object file. More complete
/// initialization can happen in this function which will get called
/// prior to any other functions in the SymbolFile protocol.
virtual void InitializeObject() {}
// Compile Unit function calls
// Approach 1 - iterator
virtual uint32_t GetNumCompileUnits() = 0;
virtual lldb::CompUnitSP ParseCompileUnitAtIndex(uint32_t index) = 0;
virtual lldb::LanguageType ParseLanguage(CompileUnit &comp_unit) = 0;
virtual size_t ParseFunctions(CompileUnit &comp_unit) = 0;
virtual bool ParseLineTable(CompileUnit &comp_unit) = 0;
virtual bool ParseDebugMacros(CompileUnit &comp_unit) = 0;
virtual bool ParseSupportFiles(CompileUnit &comp_unit,
FileSpecList &support_files) = 0;
virtual size_t ParseTypes(CompileUnit &comp_unit) = 0;
virtual bool ParseIsOptimized(CompileUnit &comp_unit) { return false; }
virtual bool
ParseImportedModules(const SymbolContext &sc,
std::vector<SourceModule> &imported_modules) = 0;
virtual size_t ParseBlocksRecursive(Function &func) = 0;
virtual size_t ParseVariablesForContext(const SymbolContext &sc) = 0;
virtual Type *ResolveTypeUID(lldb::user_id_t type_uid) = 0;
/// The characteristics of an array type.
struct ArrayInfo {
int64_t first_index = 0;
llvm::SmallVector<uint64_t, 1> element_orders;
uint32_t byte_stride = 0;
uint32_t bit_stride = 0;
};
/// If \c type_uid points to an array type, return its characteristics.
/// To support variable-length array types, this function takes an
/// optional \p ExtecutionContext. If \c exe_ctx is non-null, the
/// dynamic characteristics for that context are returned.
virtual llvm::Optional<ArrayInfo>
GetDynamicArrayInfoForUID(lldb::user_id_t type_uid,
const lldb_private::ExecutionContext *exe_ctx) = 0;
virtual bool CompleteType(CompilerType &compiler_type) = 0;
virtual void ParseDeclsForContext(CompilerDeclContext decl_ctx) {}
virtual CompilerDecl GetDeclForUID(lldb::user_id_t uid) {
return CompilerDecl();
}
virtual CompilerDeclContext GetDeclContextForUID(lldb::user_id_t uid) {
return CompilerDeclContext();
}
virtual CompilerDeclContext GetDeclContextContainingUID(lldb::user_id_t uid) {
return CompilerDeclContext();
}
virtual uint32_t ResolveSymbolContext(const Address &so_addr,
lldb::SymbolContextItem resolve_scope,
SymbolContext &sc) = 0;
virtual uint32_t ResolveSymbolContext(const FileSpec &file_spec,
uint32_t line, bool check_inlines,
lldb::SymbolContextItem resolve_scope,
SymbolContextList &sc_list);
virtual void DumpClangAST(Stream &s) {}
virtual uint32_t
FindGlobalVariables(ConstString name,
const CompilerDeclContext *parent_decl_ctx,
uint32_t max_matches, VariableList &variables);
virtual uint32_t FindGlobalVariables(const RegularExpression &regex,
uint32_t max_matches,
VariableList &variables);
virtual uint32_t FindFunctions(ConstString name,
const CompilerDeclContext *parent_decl_ctx,
lldb::FunctionNameType name_type_mask,
bool include_inlines, bool append,
SymbolContextList &sc_list);
virtual uint32_t FindFunctions(const RegularExpression &regex,
bool include_inlines, bool append,
SymbolContextList &sc_list);
virtual uint32_t
FindTypes(ConstString name, const CompilerDeclContext *parent_decl_ctx,
bool append, uint32_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
virtual size_t FindTypes(const std::vector<CompilerContext> &context,
bool append, TypeMap &types);
virtual void
GetMangledNamesForFunction(const std::string &scope_qualified_name,
std::vector<ConstString> &mangled_names);
// virtual uint32_t FindTypes (const SymbolContext& sc, const
// RegularExpression& regex, bool append, uint32_t max_matches, TypeList&
// types) = 0;
virtual TypeList *GetTypeList();
virtual size_t GetTypes(lldb_private::SymbolContextScope *sc_scope,
lldb::TypeClass type_mask,
lldb_private::TypeList &type_list) = 0;
virtual void PreloadSymbols();
virtual lldb_private::TypeSystem *
GetTypeSystemForLanguage(lldb::LanguageType language);
virtual CompilerDeclContext
FindNamespace(ConstString name,
const CompilerDeclContext *parent_decl_ctx) {
return CompilerDeclContext();
}
ObjectFile *GetObjectFile() { return m_obj_file; }
const ObjectFile *GetObjectFile() const { return m_obj_file; }
virtual std::vector<CallEdge> ParseCallEdgesInFunction(UserID func_id) {
return {};
}
virtual void AddSymbols(Symtab &symtab) {}
/// Notify the SymbolFile that the file addresses in the Sections
/// for this module have been changed.
virtual void SectionFileAddressesChanged() {}
struct RegisterInfoResolver {
virtual ~RegisterInfoResolver(); // anchor
virtual const RegisterInfo *ResolveName(llvm::StringRef name) const = 0;
virtual const RegisterInfo *ResolveNumber(lldb::RegisterKind kind,
uint32_t number) const = 0;
};
virtual lldb::UnwindPlanSP
GetUnwindPlan(const Address &address, const RegisterInfoResolver &resolver) {
return nullptr;
}
virtual void Dump(Stream &s) {}
protected:
void AssertModuleLock();
ObjectFile *m_obj_file; // The object file that symbols can be extracted from.
uint32_t m_abilities;
bool m_calculated_abilities;
private:
DISALLOW_COPY_AND_ASSIGN(SymbolFile);
};
} // namespace lldb_private
#endif // liblldb_SymbolFile_h_