| //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides a simple and efficient mechanism for performing general |
| // tree-based pattern matches on the LLVM IR. The power of these routines is |
| // that it allows you to write concise patterns that are expressive and easy to |
| // understand. The other major advantage of this is that it allows you to |
| // trivially capture/bind elements in the pattern to variables. For example, |
| // you can do something like this: |
| // |
| // Value *Exp = ... |
| // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
| // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
| // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
| // ... Pattern is matched and variables are bound ... |
| // } |
| // |
| // This is primarily useful to things like the instruction combiner, but can |
| // also be useful for static analysis tools or code generators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_IR_PATTERNMATCH_H |
| #define LLVM_IR_PATTERNMATCH_H |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include <cstdint> |
| |
| namespace llvm { |
| namespace PatternMatch { |
| |
| template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
| return const_cast<Pattern &>(P).match(V); |
| } |
| |
| template <typename SubPattern_t> struct OneUse_match { |
| SubPattern_t SubPattern; |
| |
| OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| return V->hasOneUse() && SubPattern.match(V); |
| } |
| }; |
| |
| template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
| return SubPattern; |
| } |
| |
| template <typename Class> struct class_match { |
| template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
| }; |
| |
| /// Match an arbitrary value and ignore it. |
| inline class_match<Value> m_Value() { return class_match<Value>(); } |
| |
| /// Match an arbitrary binary operation and ignore it. |
| inline class_match<BinaryOperator> m_BinOp() { |
| return class_match<BinaryOperator>(); |
| } |
| |
| /// Matches any compare instruction and ignore it. |
| inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
| |
| /// Match an arbitrary ConstantInt and ignore it. |
| inline class_match<ConstantInt> m_ConstantInt() { |
| return class_match<ConstantInt>(); |
| } |
| |
| /// Match an arbitrary undef constant. |
| inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } |
| |
| /// Match an arbitrary Constant and ignore it. |
| inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
| |
| /// Matching combinators |
| template <typename LTy, typename RTy> struct match_combine_or { |
| LTy L; |
| RTy R; |
| |
| match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (L.match(V)) |
| return true; |
| if (R.match(V)) |
| return true; |
| return false; |
| } |
| }; |
| |
| template <typename LTy, typename RTy> struct match_combine_and { |
| LTy L; |
| RTy R; |
| |
| match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (L.match(V)) |
| if (R.match(V)) |
| return true; |
| return false; |
| } |
| }; |
| |
| /// Combine two pattern matchers matching L || R |
| template <typename LTy, typename RTy> |
| inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
| return match_combine_or<LTy, RTy>(L, R); |
| } |
| |
| /// Combine two pattern matchers matching L && R |
| template <typename LTy, typename RTy> |
| inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
| return match_combine_and<LTy, RTy>(L, R); |
| } |
| |
| struct apint_match { |
| const APInt *&Res; |
| |
| apint_match(const APInt *&R) : Res(R) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (auto *CI = dyn_cast<ConstantInt>(V)) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| if (V->getType()->isVectorTy()) |
| if (const auto *C = dyn_cast<Constant>(V)) |
| if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| // Either constexpr if or renaming ConstantFP::getValueAPF to |
| // ConstantFP::getValue is needed to do it via single template |
| // function for both apint/apfloat. |
| struct apfloat_match { |
| const APFloat *&Res; |
| apfloat_match(const APFloat *&R) : Res(R) {} |
| template <typename ITy> bool match(ITy *V) { |
| if (auto *CI = dyn_cast<ConstantFP>(V)) { |
| Res = &CI->getValueAPF(); |
| return true; |
| } |
| if (V->getType()->isVectorTy()) |
| if (const auto *C = dyn_cast<Constant>(V)) |
| if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) { |
| Res = &CI->getValueAPF(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// Match a ConstantInt or splatted ConstantVector, binding the |
| /// specified pointer to the contained APInt. |
| inline apint_match m_APInt(const APInt *&Res) { return Res; } |
| |
| /// Match a ConstantFP or splatted ConstantVector, binding the |
| /// specified pointer to the contained APFloat. |
| inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; } |
| |
| template <int64_t Val> struct constantint_match { |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
| const APInt &CIV = CI->getValue(); |
| if (Val >= 0) |
| return CIV == static_cast<uint64_t>(Val); |
| // If Val is negative, and CI is shorter than it, truncate to the right |
| // number of bits. If it is larger, then we have to sign extend. Just |
| // compare their negated values. |
| return -CIV == -Val; |
| } |
| return false; |
| } |
| }; |
| |
| /// Match a ConstantInt with a specific value. |
| template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
| return constantint_match<Val>(); |
| } |
| |
| /// This helper class is used to match scalar and vector integer constants that |
| /// satisfy a specified predicate. |
| /// For vector constants, undefined elements are ignored. |
| template <typename Predicate> struct cst_pred_ty : public Predicate { |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| return this->isValue(CI->getValue()); |
| if (V->getType()->isVectorTy()) { |
| if (const auto *C = dyn_cast<Constant>(V)) { |
| if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| return this->isValue(CI->getValue()); |
| |
| // Non-splat vector constant: check each element for a match. |
| unsigned NumElts = V->getType()->getVectorNumElements(); |
| assert(NumElts != 0 && "Constant vector with no elements?"); |
| bool HasNonUndefElements = false; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) |
| return false; |
| if (isa<UndefValue>(Elt)) |
| continue; |
| auto *CI = dyn_cast<ConstantInt>(Elt); |
| if (!CI || !this->isValue(CI->getValue())) |
| return false; |
| HasNonUndefElements = true; |
| } |
| return HasNonUndefElements; |
| } |
| } |
| return false; |
| } |
| }; |
| |
| /// This helper class is used to match scalar and vector constants that |
| /// satisfy a specified predicate, and bind them to an APInt. |
| template <typename Predicate> struct api_pred_ty : public Predicate { |
| const APInt *&Res; |
| |
| api_pred_ty(const APInt *&R) : Res(R) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CI = dyn_cast<ConstantInt>(V)) |
| if (this->isValue(CI->getValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| if (V->getType()->isVectorTy()) |
| if (const auto *C = dyn_cast<Constant>(V)) |
| if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
| if (this->isValue(CI->getValue())) { |
| Res = &CI->getValue(); |
| return true; |
| } |
| |
| return false; |
| } |
| }; |
| |
| /// This helper class is used to match scalar and vector floating-point |
| /// constants that satisfy a specified predicate. |
| /// For vector constants, undefined elements are ignored. |
| template <typename Predicate> struct cstfp_pred_ty : public Predicate { |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CF = dyn_cast<ConstantFP>(V)) |
| return this->isValue(CF->getValueAPF()); |
| if (V->getType()->isVectorTy()) { |
| if (const auto *C = dyn_cast<Constant>(V)) { |
| if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| return this->isValue(CF->getValueAPF()); |
| |
| // Non-splat vector constant: check each element for a match. |
| unsigned NumElts = V->getType()->getVectorNumElements(); |
| assert(NumElts != 0 && "Constant vector with no elements?"); |
| bool HasNonUndefElements = false; |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *Elt = C->getAggregateElement(i); |
| if (!Elt) |
| return false; |
| if (isa<UndefValue>(Elt)) |
| continue; |
| auto *CF = dyn_cast<ConstantFP>(Elt); |
| if (!CF || !this->isValue(CF->getValueAPF())) |
| return false; |
| HasNonUndefElements = true; |
| } |
| return HasNonUndefElements; |
| } |
| } |
| return false; |
| } |
| }; |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| // |
| // Encapsulate constant value queries for use in templated predicate matchers. |
| // This allows checking if constants match using compound predicates and works |
| // with vector constants, possibly with relaxed constraints. For example, ignore |
| // undef values. |
| // |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| struct is_all_ones { |
| bool isValue(const APInt &C) { return C.isAllOnesValue(); } |
| }; |
| /// Match an integer or vector with all bits set. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_all_ones> m_AllOnes() { |
| return cst_pred_ty<is_all_ones>(); |
| } |
| |
| struct is_maxsignedvalue { |
| bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
| }; |
| /// Match an integer or vector with values having all bits except for the high |
| /// bit set (0x7f...). |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
| return cst_pred_ty<is_maxsignedvalue>(); |
| } |
| inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
| return V; |
| } |
| |
| struct is_negative { |
| bool isValue(const APInt &C) { return C.isNegative(); } |
| }; |
| /// Match an integer or vector of negative values. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_negative> m_Negative() { |
| return cst_pred_ty<is_negative>(); |
| } |
| inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { |
| return V; |
| } |
| |
| struct is_nonnegative { |
| bool isValue(const APInt &C) { return C.isNonNegative(); } |
| }; |
| /// Match an integer or vector of nonnegative values. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
| return cst_pred_ty<is_nonnegative>(); |
| } |
| inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { |
| return V; |
| } |
| |
| struct is_one { |
| bool isValue(const APInt &C) { return C.isOneValue(); } |
| }; |
| /// Match an integer 1 or a vector with all elements equal to 1. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_one> m_One() { |
| return cst_pred_ty<is_one>(); |
| } |
| |
| struct is_zero_int { |
| bool isValue(const APInt &C) { return C.isNullValue(); } |
| }; |
| /// Match an integer 0 or a vector with all elements equal to 0. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
| return cst_pred_ty<is_zero_int>(); |
| } |
| |
| struct is_zero { |
| template <typename ITy> bool match(ITy *V) { |
| auto *C = dyn_cast<Constant>(V); |
| return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
| } |
| }; |
| /// Match any null constant or a vector with all elements equal to 0. |
| /// For vectors, this includes constants with undefined elements. |
| inline is_zero m_Zero() { |
| return is_zero(); |
| } |
| |
| struct is_power2 { |
| bool isValue(const APInt &C) { return C.isPowerOf2(); } |
| }; |
| /// Match an integer or vector power-of-2. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_power2> m_Power2() { |
| return cst_pred_ty<is_power2>(); |
| } |
| inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { |
| return V; |
| } |
| |
| struct is_power2_or_zero { |
| bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
| }; |
| /// Match an integer or vector of 0 or power-of-2 values. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
| return cst_pred_ty<is_power2_or_zero>(); |
| } |
| inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
| return V; |
| } |
| |
| struct is_sign_mask { |
| bool isValue(const APInt &C) { return C.isSignMask(); } |
| }; |
| /// Match an integer or vector with only the sign bit(s) set. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_sign_mask> m_SignMask() { |
| return cst_pred_ty<is_sign_mask>(); |
| } |
| |
| struct is_lowbit_mask { |
| bool isValue(const APInt &C) { return C.isMask(); } |
| }; |
| /// Match an integer or vector with only the low bit(s) set. |
| /// For vectors, this includes constants with undefined elements. |
| inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
| return cst_pred_ty<is_lowbit_mask>(); |
| } |
| |
| struct is_unsigned_less_than { |
| const APInt *Thr; |
| bool isValue(const APInt &C) { return C.ult(*Thr); } |
| }; |
| /// Match an integer or vector with every element unsigned less than the |
| /// Threshold. For vectors, this includes constants with undefined elements. |
| /// FIXME: is it worth generalizing this to simply take ICmpInst::Predicate? |
| inline cst_pred_ty<is_unsigned_less_than> |
| m_SpecificInt_ULT(const APInt &Threshold) { |
| cst_pred_ty<is_unsigned_less_than> P; |
| P.Thr = &Threshold; |
| return P; |
| } |
| |
| struct is_nan { |
| bool isValue(const APFloat &C) { return C.isNaN(); } |
| }; |
| /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
| /// For vectors, this includes constants with undefined elements. |
| inline cstfp_pred_ty<is_nan> m_NaN() { |
| return cstfp_pred_ty<is_nan>(); |
| } |
| |
| struct is_any_zero_fp { |
| bool isValue(const APFloat &C) { return C.isZero(); } |
| }; |
| /// Match a floating-point negative zero or positive zero. |
| /// For vectors, this includes constants with undefined elements. |
| inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
| return cstfp_pred_ty<is_any_zero_fp>(); |
| } |
| |
| struct is_pos_zero_fp { |
| bool isValue(const APFloat &C) { return C.isPosZero(); } |
| }; |
| /// Match a floating-point positive zero. |
| /// For vectors, this includes constants with undefined elements. |
| inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
| return cstfp_pred_ty<is_pos_zero_fp>(); |
| } |
| |
| struct is_neg_zero_fp { |
| bool isValue(const APFloat &C) { return C.isNegZero(); } |
| }; |
| /// Match a floating-point negative zero. |
| /// For vectors, this includes constants with undefined elements. |
| inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
| return cstfp_pred_ty<is_neg_zero_fp>(); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| template <typename Class> struct bind_ty { |
| Class *&VR; |
| |
| bind_ty(Class *&V) : VR(V) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (auto *CV = dyn_cast<Class>(V)) { |
| VR = CV; |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// Match a value, capturing it if we match. |
| inline bind_ty<Value> m_Value(Value *&V) { return V; } |
| inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
| |
| /// Match an instruction, capturing it if we match. |
| inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
| /// Match a binary operator, capturing it if we match. |
| inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
| |
| /// Match a ConstantInt, capturing the value if we match. |
| inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
| |
| /// Match a Constant, capturing the value if we match. |
| inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
| |
| /// Match a ConstantFP, capturing the value if we match. |
| inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
| |
| /// Match a specified Value*. |
| struct specificval_ty { |
| const Value *Val; |
| |
| specificval_ty(const Value *V) : Val(V) {} |
| |
| template <typename ITy> bool match(ITy *V) { return V == Val; } |
| }; |
| |
| /// Match if we have a specific specified value. |
| inline specificval_ty m_Specific(const Value *V) { return V; } |
| |
| /// Stores a reference to the Value *, not the Value * itself, |
| /// thus can be used in commutative matchers. |
| template <typename Class> struct deferredval_ty { |
| Class *const &Val; |
| |
| deferredval_ty(Class *const &V) : Val(V) {} |
| |
| template <typename ITy> bool match(ITy *const V) { return V == Val; } |
| }; |
| |
| /// A commutative-friendly version of m_Specific(). |
| inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
| inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
| return V; |
| } |
| |
| /// Match a specified floating point value or vector of all elements of |
| /// that value. |
| struct specific_fpval { |
| double Val; |
| |
| specific_fpval(double V) : Val(V) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
| return CFP->isExactlyValue(Val); |
| if (V->getType()->isVectorTy()) |
| if (const auto *C = dyn_cast<Constant>(V)) |
| if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
| return CFP->isExactlyValue(Val); |
| return false; |
| } |
| }; |
| |
| /// Match a specific floating point value or vector with all elements |
| /// equal to the value. |
| inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
| |
| /// Match a float 1.0 or vector with all elements equal to 1.0. |
| inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
| |
| struct bind_const_intval_ty { |
| uint64_t &VR; |
| |
| bind_const_intval_ty(uint64_t &V) : VR(V) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| if (const auto *CV = dyn_cast<ConstantInt>(V)) |
| if (CV->getValue().ule(UINT64_MAX)) { |
| VR = CV->getZExtValue(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| /// Match a specified integer value or vector of all elements of that |
| // value. |
| struct specific_intval { |
| uint64_t Val; |
| |
| specific_intval(uint64_t V) : Val(V) {} |
| |
| template <typename ITy> bool match(ITy *V) { |
| const auto *CI = dyn_cast<ConstantInt>(V); |
| if (!CI && V->getType()->isVectorTy()) |
| if (const auto *C = dyn_cast<Constant>(V)) |
| CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()); |
| |
| return CI && CI->getValue() == Val; |
| } |
| }; |
| |
| /// Match a specific integer value or vector with all elements equal to |
| /// the value. |
| inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); } |
| |
| /// Match a ConstantInt and bind to its value. This does not match |
| /// ConstantInts wider than 64-bits. |
| inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
| |
| //===----------------------------------------------------------------------===// |
| // Matcher for any binary operator. |
| // |
| template <typename LHS_t, typename RHS_t, bool Commutable = false> |
| struct AnyBinaryOp_match { |
| LHS_t L; |
| RHS_t R; |
| |
| // The evaluation order is always stable, regardless of Commutability. |
| // The LHS is always matched first. |
| AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *I = dyn_cast<BinaryOperator>(V)) |
| return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| (Commutable && L.match(I->getOperand(1)) && |
| R.match(I->getOperand(0))); |
| return false; |
| } |
| }; |
| |
| template <typename LHS, typename RHS> |
| inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
| return AnyBinaryOp_match<LHS, RHS>(L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for specific binary operators. |
| // |
| |
| template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| bool Commutable = false> |
| struct BinaryOp_match { |
| LHS_t L; |
| RHS_t R; |
| |
| // The evaluation order is always stable, regardless of Commutability. |
| // The LHS is always matched first. |
| BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opcode) { |
| auto *I = cast<BinaryOperator>(V); |
| return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| (Commutable && L.match(I->getOperand(1)) && |
| R.match(I->getOperand(0))); |
| } |
| if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| return CE->getOpcode() == Opcode && |
| ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
| (Commutable && L.match(CE->getOperand(1)) && |
| R.match(CE->getOperand(0)))); |
| return false; |
| } |
| }; |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
| } |
| |
| template <typename Op_t> struct FNeg_match { |
| Op_t X; |
| |
| FNeg_match(const Op_t &Op) : X(Op) {} |
| template <typename OpTy> bool match(OpTy *V) { |
| auto *FPMO = dyn_cast<FPMathOperator>(V); |
| if (!FPMO) return false; |
| |
| if (FPMO->getOpcode() == Instruction::FNeg) |
| return X.match(FPMO->getOperand(0)); |
| |
| if (FPMO->getOpcode() == Instruction::FSub) { |
| if (FPMO->hasNoSignedZeros()) { |
| // With 'nsz', any zero goes. |
| if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
| return false; |
| } else { |
| // Without 'nsz', we need fsub -0.0, X exactly. |
| if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
| return false; |
| } |
| |
| return X.match(FPMO->getOperand(1)); |
| } |
| |
| return false; |
| } |
| }; |
| |
| /// Match 'fneg X' as 'fsub -0.0, X'. |
| template <typename OpTy> |
| inline FNeg_match<OpTy> |
| m_FNeg(const OpTy &X) { |
| return FNeg_match<OpTy>(X); |
| } |
| |
| /// Match 'fneg X' as 'fsub +-0.0, X'. |
| template <typename RHS> |
| inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
| m_FNegNSZ(const RHS &X) { |
| return m_FSub(m_AnyZeroFP(), X); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
| } |
| |
| template <typename LHS_t, typename RHS_t, unsigned Opcode, |
| unsigned WrapFlags = 0> |
| struct OverflowingBinaryOp_match { |
| LHS_t L; |
| RHS_t R; |
| |
| OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
| : L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
| if (Op->getOpcode() != Opcode) |
| return false; |
| if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap && |
| !Op->hasNoUnsignedWrap()) |
| return false; |
| if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap && |
| !Op->hasNoSignedWrap()) |
| return false; |
| return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
| } |
| return false; |
| } |
| }; |
| |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| OverflowingBinaryOperator::NoSignedWrap> |
| m_NSWAdd(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| OverflowingBinaryOperator::NoSignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| OverflowingBinaryOperator::NoSignedWrap> |
| m_NSWSub(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| OverflowingBinaryOperator::NoSignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| OverflowingBinaryOperator::NoSignedWrap> |
| m_NSWMul(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| OverflowingBinaryOperator::NoSignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| OverflowingBinaryOperator::NoSignedWrap> |
| m_NSWShl(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| OverflowingBinaryOperator::NoSignedWrap>( |
| L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| OverflowingBinaryOperator::NoUnsignedWrap> |
| m_NUWAdd(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
| OverflowingBinaryOperator::NoUnsignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| OverflowingBinaryOperator::NoUnsignedWrap> |
| m_NUWSub(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
| OverflowingBinaryOperator::NoUnsignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| OverflowingBinaryOperator::NoUnsignedWrap> |
| m_NUWMul(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
| OverflowingBinaryOperator::NoUnsignedWrap>( |
| L, R); |
| } |
| template <typename LHS, typename RHS> |
| inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| OverflowingBinaryOperator::NoUnsignedWrap> |
| m_NUWShl(const LHS &L, const RHS &R) { |
| return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
| OverflowingBinaryOperator::NoUnsignedWrap>( |
| L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Class that matches a group of binary opcodes. |
| // |
| template <typename LHS_t, typename RHS_t, typename Predicate> |
| struct BinOpPred_match : Predicate { |
| LHS_t L; |
| RHS_t R; |
| |
| BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
| R.match(I->getOperand(1)); |
| if (auto *CE = dyn_cast<ConstantExpr>(V)) |
| return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
| R.match(CE->getOperand(1)); |
| return false; |
| } |
| }; |
| |
| struct is_shift_op { |
| bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
| }; |
| |
| struct is_right_shift_op { |
| bool isOpType(unsigned Opcode) { |
| return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
| } |
| }; |
| |
| struct is_logical_shift_op { |
| bool isOpType(unsigned Opcode) { |
| return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
| } |
| }; |
| |
| struct is_bitwiselogic_op { |
| bool isOpType(unsigned Opcode) { |
| return Instruction::isBitwiseLogicOp(Opcode); |
| } |
| }; |
| |
| struct is_idiv_op { |
| bool isOpType(unsigned Opcode) { |
| return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
| } |
| }; |
| |
| /// Matches shift operations. |
| template <typename LHS, typename RHS> |
| inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
| const RHS &R) { |
| return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
| } |
| |
| /// Matches logical shift operations. |
| template <typename LHS, typename RHS> |
| inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
| const RHS &R) { |
| return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
| } |
| |
| /// Matches logical shift operations. |
| template <typename LHS, typename RHS> |
| inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
| m_LogicalShift(const LHS &L, const RHS &R) { |
| return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
| } |
| |
| /// Matches bitwise logic operations. |
| template <typename LHS, typename RHS> |
| inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
| m_BitwiseLogic(const LHS &L, const RHS &R) { |
| return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
| } |
| |
| /// Matches integer division operations. |
| template <typename LHS, typename RHS> |
| inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
| const RHS &R) { |
| return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Class that matches exact binary ops. |
| // |
| template <typename SubPattern_t> struct Exact_match { |
| SubPattern_t SubPattern; |
| |
| Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
| return PEO->isExact() && SubPattern.match(V); |
| return false; |
| } |
| }; |
| |
| template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
| return SubPattern; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for CmpInst classes |
| // |
| |
| template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
| bool Commutable = false> |
| struct CmpClass_match { |
| PredicateTy &Predicate; |
| LHS_t L; |
| RHS_t R; |
| |
| // The evaluation order is always stable, regardless of Commutability. |
| // The LHS is always matched first. |
| CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
| : Predicate(Pred), L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *I = dyn_cast<Class>(V)) |
| if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
| (Commutable && L.match(I->getOperand(1)) && |
| R.match(I->getOperand(0)))) { |
| Predicate = I->getPredicate(); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| template <typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
| m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
| m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
| m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for instructions with a given opcode and number of operands. |
| // |
| |
| /// Matches instructions with Opcode and three operands. |
| template <typename T0, unsigned Opcode> struct OneOps_match { |
| T0 Op1; |
| |
| OneOps_match(const T0 &Op1) : Op1(Op1) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opcode) { |
| auto *I = cast<Instruction>(V); |
| return Op1.match(I->getOperand(0)); |
| } |
| return false; |
| } |
| }; |
| |
| /// Matches instructions with Opcode and three operands. |
| template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
| T0 Op1; |
| T1 Op2; |
| |
| TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opcode) { |
| auto *I = cast<Instruction>(V); |
| return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
| } |
| return false; |
| } |
| }; |
| |
| /// Matches instructions with Opcode and three operands. |
| template <typename T0, typename T1, typename T2, unsigned Opcode> |
| struct ThreeOps_match { |
| T0 Op1; |
| T1 Op2; |
| T2 Op3; |
| |
| ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
| : Op1(Op1), Op2(Op2), Op3(Op3) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (V->getValueID() == Value::InstructionVal + Opcode) { |
| auto *I = cast<Instruction>(V); |
| return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
| Op3.match(I->getOperand(2)); |
| } |
| return false; |
| } |
| }; |
| |
| /// Matches SelectInst. |
| template <typename Cond, typename LHS, typename RHS> |
| inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
| m_Select(const Cond &C, const LHS &L, const RHS &R) { |
| return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
| } |
| |
| /// This matches a select of two constants, e.g.: |
| /// m_SelectCst<-1, 0>(m_Value(V)) |
| template <int64_t L, int64_t R, typename Cond> |
| inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
| Instruction::Select> |
| m_SelectCst(const Cond &C) { |
| return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
| } |
| |
| /// Matches InsertElementInst. |
| template <typename Val_t, typename Elt_t, typename Idx_t> |
| inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
| m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
| return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
| Val, Elt, Idx); |
| } |
| |
| /// Matches ExtractElementInst. |
| template <typename Val_t, typename Idx_t> |
| inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
| m_ExtractElement(const Val_t &Val, const Idx_t &Idx) { |
| return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
| } |
| |
| /// Matches ShuffleVectorInst. |
| template <typename V1_t, typename V2_t, typename Mask_t> |
| inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector> |
| m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) { |
| return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2, |
| m); |
| } |
| |
| /// Matches LoadInst. |
| template <typename OpTy> |
| inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
| return OneOps_match<OpTy, Instruction::Load>(Op); |
| } |
| |
| /// Matches StoreInst. |
| template <typename ValueOpTy, typename PointerOpTy> |
| inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
| m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
| return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
| PointerOp); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for CastInst classes |
| // |
| |
| template <typename Op_t, unsigned Opcode> struct CastClass_match { |
| Op_t Op; |
| |
| CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *O = dyn_cast<Operator>(V)) |
| return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
| return false; |
| } |
| }; |
| |
| /// Matches BitCast. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::BitCast>(Op); |
| } |
| |
| /// Matches PtrToInt. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
| } |
| |
| /// Matches Trunc. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::Trunc>(Op); |
| } |
| |
| /// Matches SExt. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::SExt>(Op); |
| } |
| |
| /// Matches ZExt. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::ZExt>(Op); |
| } |
| |
| template <typename OpTy> |
| inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
| CastClass_match<OpTy, Instruction::SExt>> |
| m_ZExtOrSExt(const OpTy &Op) { |
| return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
| } |
| |
| /// Matches UIToFP. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
| } |
| |
| /// Matches SIToFP. |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
| } |
| |
| /// Matches FPTrunc |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
| } |
| |
| /// Matches FPExt |
| template <typename OpTy> |
| inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
| return CastClass_match<OpTy, Instruction::FPExt>(Op); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for control flow. |
| // |
| |
| struct br_match { |
| BasicBlock *&Succ; |
| |
| br_match(BasicBlock *&Succ) : Succ(Succ) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *BI = dyn_cast<BranchInst>(V)) |
| if (BI->isUnconditional()) { |
| Succ = BI->getSuccessor(0); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
| |
| template <typename Cond_t> struct brc_match { |
| Cond_t Cond; |
| BasicBlock *&T, *&F; |
| |
| brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) |
| : Cond(C), T(t), F(f) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (auto *BI = dyn_cast<BranchInst>(V)) |
| if (BI->isConditional() && Cond.match(BI->getCondition())) { |
| T = BI->getSuccessor(0); |
| F = BI->getSuccessor(1); |
| return true; |
| } |
| return false; |
| } |
| }; |
| |
| template <typename Cond_t> |
| inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
| return brc_match<Cond_t>(C, T, F); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
| // |
| |
| template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
| bool Commutable = false> |
| struct MaxMin_match { |
| LHS_t L; |
| RHS_t R; |
| |
| // The evaluation order is always stable, regardless of Commutability. |
| // The LHS is always matched first. |
| MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
| auto *SI = dyn_cast<SelectInst>(V); |
| if (!SI) |
| return false; |
| auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
| if (!Cmp) |
| return false; |
| // At this point we have a select conditioned on a comparison. Check that |
| // it is the values returned by the select that are being compared. |
| Value *TrueVal = SI->getTrueValue(); |
| Value *FalseVal = SI->getFalseValue(); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| if ((TrueVal != LHS || FalseVal != RHS) && |
| (TrueVal != RHS || FalseVal != LHS)) |
| return false; |
| typename CmpInst_t::Predicate Pred = |
| LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
| // Does "(x pred y) ? x : y" represent the desired max/min operation? |
| if (!Pred_t::match(Pred)) |
| return false; |
| // It does! Bind the operands. |
| return (L.match(LHS) && R.match(RHS)) || |
| (Commutable && L.match(RHS) && R.match(LHS)); |
| } |
| }; |
| |
| /// Helper class for identifying signed max predicates. |
| struct smax_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
| } |
| }; |
| |
| /// Helper class for identifying signed min predicates. |
| struct smin_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
| } |
| }; |
| |
| /// Helper class for identifying unsigned max predicates. |
| struct umax_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
| } |
| }; |
| |
| /// Helper class for identifying unsigned min predicates. |
| struct umin_pred_ty { |
| static bool match(ICmpInst::Predicate Pred) { |
| return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
| } |
| }; |
| |
| /// Helper class for identifying ordered max predicates. |
| struct ofmax_pred_ty { |
| static bool match(FCmpInst::Predicate Pred) { |
| return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
| } |
| }; |
| |
| /// Helper class for identifying ordered min predicates. |
| struct ofmin_pred_ty { |
| static bool match(FCmpInst::Predicate Pred) { |
| return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
| } |
| }; |
| |
| /// Helper class for identifying unordered max predicates. |
| struct ufmax_pred_ty { |
| static bool match(FCmpInst::Predicate Pred) { |
| return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
| } |
| }; |
| |
| /// Helper class for identifying unordered min predicates. |
| struct ufmin_pred_ty { |
| static bool match(FCmpInst::Predicate Pred) { |
| return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
| } |
| }; |
| |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
| } |
| |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
| } |
| |
| /// Match an 'ordered' floating point maximum function. |
| /// Floating point has one special value 'NaN'. Therefore, there is no total |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| /// semantics. In the presence of 'NaN' we have to preserve the original |
| /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
| /// |
| /// max(L, R) iff L and R are not NaN |
| /// m_OrdFMax(L, R) = R iff L or R are NaN |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
| } |
| |
| /// Match an 'ordered' floating point minimum function. |
| /// Floating point has one special value 'NaN'. Therefore, there is no total |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| /// semantics. In the presence of 'NaN' we have to preserve the original |
| /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
| /// |
| /// min(L, R) iff L and R are not NaN |
| /// m_OrdFMin(L, R) = R iff L or R are NaN |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
| const RHS &R) { |
| return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
| } |
| |
| /// Match an 'unordered' floating point maximum function. |
| /// Floating point has one special value 'NaN'. Therefore, there is no total |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
| /// semantics. In the presence of 'NaN' we have to preserve the original |
| /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
| /// |
| /// max(L, R) iff L and R are not NaN |
| /// m_UnordFMax(L, R) = L iff L or R are NaN |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
| m_UnordFMax(const LHS &L, const RHS &R) { |
| return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
| } |
| |
| /// Match an 'unordered' floating point minimum function. |
| /// Floating point has one special value 'NaN'. Therefore, there is no total |
| /// order. However, if we can ignore the 'NaN' value (for example, because of a |
| /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
| /// semantics. In the presence of 'NaN' we have to preserve the original |
| /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
| /// |
| /// min(L, R) iff L and R are not NaN |
| /// m_UnordFMin(L, R) = L iff L or R are NaN |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
| m_UnordFMin(const LHS &L, const RHS &R) { |
| return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for overflow check patterns: e.g. (a + b) u< a |
| // |
| |
| template <typename LHS_t, typename RHS_t, typename Sum_t> |
| struct UAddWithOverflow_match { |
| LHS_t L; |
| RHS_t R; |
| Sum_t S; |
| |
| UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
| : L(L), R(R), S(S) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| Value *ICmpLHS, *ICmpRHS; |
| ICmpInst::Predicate Pred; |
| if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
| return false; |
| |
| Value *AddLHS, *AddRHS; |
| auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
| |
| // (a + b) u< a, (a + b) u< b |
| if (Pred == ICmpInst::ICMP_ULT) |
| if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
| return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| |
| // a >u (a + b), b >u (a + b) |
| if (Pred == ICmpInst::ICMP_UGT) |
| if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
| return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| |
| // Match special-case for increment-by-1. |
| if (Pred == ICmpInst::ICMP_EQ) { |
| // (a + 1) == 0 |
| // (1 + a) == 0 |
| if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
| (m_One().match(AddLHS) || m_One().match(AddRHS))) |
| return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
| // 0 == (a + 1) |
| // 0 == (1 + a) |
| if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
| (m_One().match(AddLHS) || m_One().match(AddRHS))) |
| return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
| } |
| |
| return false; |
| } |
| }; |
| |
| /// Match an icmp instruction checking for unsigned overflow on addition. |
| /// |
| /// S is matched to the addition whose result is being checked for overflow, and |
| /// L and R are matched to the LHS and RHS of S. |
| template <typename LHS_t, typename RHS_t, typename Sum_t> |
| UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
| m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
| return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
| } |
| |
| template <typename Opnd_t> struct Argument_match { |
| unsigned OpI; |
| Opnd_t Val; |
| |
| Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| // FIXME: Should likely be switched to use `CallBase`. |
| if (const auto *CI = dyn_cast<CallInst>(V)) |
| return Val.match(CI->getArgOperand(OpI)); |
| return false; |
| } |
| }; |
| |
| /// Match an argument. |
| template <unsigned OpI, typename Opnd_t> |
| inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
| return Argument_match<Opnd_t>(OpI, Op); |
| } |
| |
| /// Intrinsic matchers. |
| struct IntrinsicID_match { |
| unsigned ID; |
| |
| IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| if (const auto *CI = dyn_cast<CallInst>(V)) |
| if (const auto *F = CI->getCalledFunction()) |
| return F->getIntrinsicID() == ID; |
| return false; |
| } |
| }; |
| |
| /// Intrinsic matches are combinations of ID matchers, and argument |
| /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
| /// them with lower arity matchers. Here's some convenient typedefs for up to |
| /// several arguments, and more can be added as needed |
| template <typename T0 = void, typename T1 = void, typename T2 = void, |
| typename T3 = void, typename T4 = void, typename T5 = void, |
| typename T6 = void, typename T7 = void, typename T8 = void, |
| typename T9 = void, typename T10 = void> |
| struct m_Intrinsic_Ty; |
| template <typename T0> struct m_Intrinsic_Ty<T0> { |
| using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
| }; |
| template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
| using Ty = |
| match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
| }; |
| template <typename T0, typename T1, typename T2> |
| struct m_Intrinsic_Ty<T0, T1, T2> { |
| using Ty = |
| match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
| Argument_match<T2>>; |
| }; |
| template <typename T0, typename T1, typename T2, typename T3> |
| struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
| using Ty = |
| match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
| Argument_match<T3>>; |
| }; |
| |
| /// Match intrinsic calls like this: |
| /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
| template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
| return IntrinsicID_match(IntrID); |
| } |
| |
| template <Intrinsic::ID IntrID, typename T0> |
| inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
| return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
| } |
| |
| template <Intrinsic::ID IntrID, typename T0, typename T1> |
| inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
| const T1 &Op1) { |
| return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
| } |
| |
| template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
| inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
| m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
| return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
| } |
| |
| template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
| typename T3> |
| inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
| m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
| return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
| } |
| |
| // Helper intrinsic matching specializations. |
| template <typename Opnd0> |
| inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
| return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
| } |
| |
| template <typename Opnd0> |
| inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
| return m_Intrinsic<Intrinsic::bswap>(Op0); |
| } |
| |
| template <typename Opnd0> |
| inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
| return m_Intrinsic<Intrinsic::fabs>(Op0); |
| } |
| |
| template <typename Opnd0> |
| inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
| return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
| } |
| |
| template <typename Opnd0, typename Opnd1> |
| inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
| const Opnd1 &Op1) { |
| return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
| } |
| |
| template <typename Opnd0, typename Opnd1> |
| inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
| const Opnd1 &Op1) { |
| return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Matchers for two-operands operators with the operators in either order |
| // |
| |
| /// Matches a BinaryOperator with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
| return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
| } |
| |
| /// Matches an ICmp with a predicate over LHS and RHS in either order. |
| /// Does not swap the predicate. |
| template <typename LHS, typename RHS> |
| inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
| m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
| return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
| R); |
| } |
| |
| /// Matches a Add with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
| } |
| |
| /// Matches a Mul with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
| } |
| |
| /// Matches an And with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
| } |
| |
| /// Matches an Or with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
| } |
| |
| /// Matches an Xor with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
| const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
| } |
| |
| /// Matches a 'Neg' as 'sub 0, V'. |
| template <typename ValTy> |
| inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
| m_Neg(const ValTy &V) { |
| return m_Sub(m_ZeroInt(), V); |
| } |
| |
| /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
| template <typename ValTy> |
| inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true> |
| m_Not(const ValTy &V) { |
| return m_c_Xor(V, m_AllOnes()); |
| } |
| |
| /// Matches an SMin with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
| m_c_SMin(const LHS &L, const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
| } |
| /// Matches an SMax with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
| m_c_SMax(const LHS &L, const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
| } |
| /// Matches a UMin with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
| m_c_UMin(const LHS &L, const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
| } |
| /// Matches a UMax with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
| m_c_UMax(const LHS &L, const RHS &R) { |
| return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
| } |
| |
| /// Matches FAdd with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
| m_c_FAdd(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
| } |
| |
| /// Matches FMul with LHS and RHS in either order. |
| template <typename LHS, typename RHS> |
| inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
| m_c_FMul(const LHS &L, const RHS &R) { |
| return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
| } |
| |
| template <typename Opnd_t> struct Signum_match { |
| Opnd_t Val; |
| Signum_match(const Opnd_t &V) : Val(V) {} |
| |
| template <typename OpTy> bool match(OpTy *V) { |
| unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
| if (TypeSize == 0) |
| return false; |
| |
| unsigned ShiftWidth = TypeSize - 1; |
| Value *OpL = nullptr, *OpR = nullptr; |
| |
| // This is the representation of signum we match: |
| // |
| // signum(x) == (x >> 63) | (-x >>u 63) |
| // |
| // An i1 value is its own signum, so it's correct to match |
| // |
| // signum(x) == (x >> 0) | (-x >>u 0) |
| // |
| // for i1 values. |
| |
| auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
| auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
| auto Signum = m_Or(LHS, RHS); |
| |
| return Signum.match(V) && OpL == OpR && Val.match(OpL); |
| } |
| }; |
| |
| /// Matches a signum pattern. |
| /// |
| /// signum(x) = |
| /// x > 0 -> 1 |
| /// x == 0 -> 0 |
| /// x < 0 -> -1 |
| template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
| return Signum_match<Val_t>(V); |
| } |
| |
| } // end namespace PatternMatch |
| } // end namespace llvm |
| |
| #endif // LLVM_IR_PATTERNMATCH_H |