blob: 6d479d6b01aa4026d769d964235668a7eb02666e [file] [log] [blame]
//===- CoreEngine.h - Path-Sensitive Dataflow Engine ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a generic engine for intraprocedural, path-sensitive,
// dataflow analysis via graph reachability.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
#define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
#include "clang/AST/Stmt.h"
#include "clang/Analysis/AnalysisDeclContext.h"
#include "clang/Analysis/CFG.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <memory>
#include <utility>
#include <vector>
namespace clang {
class AnalyzerOptions;
class CXXBindTemporaryExpr;
class Expr;
class LabelDecl;
namespace ento {
class FunctionSummariesTy;
class SubEngine;
//===----------------------------------------------------------------------===//
/// CoreEngine - Implements the core logic of the graph-reachability
/// analysis. It traverses the CFG and generates the ExplodedGraph.
/// Program "states" are treated as opaque void pointers.
/// The template class CoreEngine (which subclasses CoreEngine)
/// provides the matching component to the engine that knows the actual types
/// for states. Note that this engine only dispatches to transfer functions
/// at the statement and block-level. The analyses themselves must implement
/// any transfer function logic and the sub-expression level (if any).
class CoreEngine {
friend class CommonNodeBuilder;
friend class EndOfFunctionNodeBuilder;
friend class ExprEngine;
friend class IndirectGotoNodeBuilder;
friend class NodeBuilder;
friend struct NodeBuilderContext;
friend class SwitchNodeBuilder;
public:
using BlocksExhausted =
std::vector<std::pair<BlockEdge, const ExplodedNode *>>;
using BlocksAborted =
std::vector<std::pair<const CFGBlock *, const ExplodedNode *>>;
private:
SubEngine &SubEng;
/// G - The simulation graph. Each node is a (location,state) pair.
mutable ExplodedGraph G;
/// WList - A set of queued nodes that need to be processed by the
/// worklist algorithm. It is up to the implementation of WList to decide
/// the order that nodes are processed.
std::unique_ptr<WorkList> WList;
/// BCounterFactory - A factory object for created BlockCounter objects.
/// These are used to record for key nodes in the ExplodedGraph the
/// number of times different CFGBlocks have been visited along a path.
BlockCounter::Factory BCounterFactory;
/// The locations where we stopped doing work because we visited a location
/// too many times.
BlocksExhausted blocksExhausted;
/// The locations where we stopped because the engine aborted analysis,
/// usually because it could not reason about something.
BlocksAborted blocksAborted;
/// The information about functions shared by the whole translation unit.
/// (This data is owned by AnalysisConsumer.)
FunctionSummariesTy *FunctionSummaries;
void generateNode(const ProgramPoint &Loc,
ProgramStateRef State,
ExplodedNode *Pred);
void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
void HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred);
void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
ExplodedNode *Pred);
void HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
const CFGBlock *B, ExplodedNode *Pred);
/// Handle conditional logic for running static initializers.
void HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
ExplodedNode *Pred);
private:
ExplodedNode *generateCallExitBeginNode(ExplodedNode *N,
const ReturnStmt *RS);
public:
/// Construct a CoreEngine object to analyze the provided CFG.
CoreEngine(SubEngine &subengine,
FunctionSummariesTy *FS,
AnalyzerOptions &Opts);
CoreEngine(const CoreEngine &) = delete;
CoreEngine &operator=(const CoreEngine &) = delete;
/// getGraph - Returns the exploded graph.
ExplodedGraph &getGraph() { return G; }
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of
/// steps. Returns true if there is still simulation state on the worklist.
bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
ProgramStateRef InitState);
/// Returns true if there is still simulation state on the worklist.
bool ExecuteWorkListWithInitialState(const LocationContext *L,
unsigned Steps,
ProgramStateRef InitState,
ExplodedNodeSet &Dst);
/// Dispatch the work list item based on the given location information.
/// Use Pred parameter as the predecessor state.
void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
const WorkListUnit& WU);
// Functions for external checking of whether we have unfinished work
bool wasBlockAborted() const { return !blocksAborted.empty(); }
bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
bool hasWorkRemaining() const { return wasBlocksExhausted() ||
WList->hasWork() ||
wasBlockAborted(); }
/// Inform the CoreEngine that a basic block was aborted because
/// it could not be completely analyzed.
void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
blocksAborted.push_back(std::make_pair(block, node));
}
WorkList *getWorkList() const { return WList.get(); }
BlocksExhausted::const_iterator blocks_exhausted_begin() const {
return blocksExhausted.begin();
}
BlocksExhausted::const_iterator blocks_exhausted_end() const {
return blocksExhausted.end();
}
BlocksAborted::const_iterator blocks_aborted_begin() const {
return blocksAborted.begin();
}
BlocksAborted::const_iterator blocks_aborted_end() const {
return blocksAborted.end();
}
/// \brief Enqueue the given set of nodes onto the work list.
void enqueue(ExplodedNodeSet &Set);
/// \brief Enqueue nodes that were created as a result of processing
/// a statement onto the work list.
void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
/// \brief enqueue the nodes corresponding to the end of function onto the
/// end of path / work list.
void enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS);
/// \brief Enqueue a single node created as a result of statement processing.
void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
};
// TODO: Turn into a calss.
struct NodeBuilderContext {
const CoreEngine &Eng;
const CFGBlock *Block;
const LocationContext *LC;
NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
: Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }
/// \brief Return the CFGBlock associated with this builder.
const CFGBlock *getBlock() const { return Block; }
/// \brief Returns the number of times the current basic block has been
/// visited on the exploded graph path.
unsigned blockCount() const {
return Eng.WList->getBlockCounter().getNumVisited(
LC->getCurrentStackFrame(),
Block->getBlockID());
}
};
/// \class NodeBuilder
/// \brief This is the simplest builder which generates nodes in the
/// ExplodedGraph.
///
/// The main benefit of the builder is that it automatically tracks the
/// frontier nodes (or destination set). This is the set of nodes which should
/// be propagated to the next step / builder. They are the nodes which have been
/// added to the builder (either as the input node set or as the newly
/// constructed nodes) but did not have any outgoing transitions added.
class NodeBuilder {
virtual void anchor();
protected:
const NodeBuilderContext &C;
/// Specifies if the builder results have been finalized. For example, if it
/// is set to false, autotransitions are yet to be generated.
bool Finalized;
bool HasGeneratedNodes = false;
/// \brief The frontier set - a set of nodes which need to be propagated after
/// the builder dies.
ExplodedNodeSet &Frontier;
/// Checkes if the results are ready.
virtual bool checkResults() {
return Finalized;
}
bool hasNoSinksInFrontier() {
for (const auto I : Frontier)
if (I->isSink())
return false;
return true;
}
/// Allow subclasses to finalize results before result_begin() is executed.
virtual void finalizeResults() {}
ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
ProgramStateRef State,
ExplodedNode *Pred,
bool MarkAsSink = false);
public:
NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, bool F = true)
: C(Ctx), Finalized(F), Frontier(DstSet) {
Frontier.Add(SrcNode);
}
NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, bool F = true)
: C(Ctx), Finalized(F), Frontier(DstSet) {
Frontier.insert(SrcSet);
assert(hasNoSinksInFrontier());
}
virtual ~NodeBuilder() = default;
/// \brief Generates a node in the ExplodedGraph.
ExplodedNode *generateNode(const ProgramPoint &PP,
ProgramStateRef State,
ExplodedNode *Pred) {
return generateNodeImpl(PP, State, Pred, false);
}
/// \brief Generates a sink in the ExplodedGraph.
///
/// When a node is marked as sink, the exploration from the node is stopped -
/// the node becomes the last node on the path and certain kinds of bugs are
/// suppressed.
ExplodedNode *generateSink(const ProgramPoint &PP,
ProgramStateRef State,
ExplodedNode *Pred) {
return generateNodeImpl(PP, State, Pred, true);
}
const ExplodedNodeSet &getResults() {
finalizeResults();
assert(checkResults());
return Frontier;
}
using iterator = ExplodedNodeSet::iterator;
/// \brief Iterators through the results frontier.
iterator begin() {
finalizeResults();
assert(checkResults());
return Frontier.begin();
}
iterator end() {
finalizeResults();
return Frontier.end();
}
const NodeBuilderContext &getContext() { return C; }
bool hasGeneratedNodes() { return HasGeneratedNodes; }
void takeNodes(const ExplodedNodeSet &S) {
for (const auto I : S)
Frontier.erase(I);
}
void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
void addNodes(ExplodedNode *N) { Frontier.Add(N); }
};
/// \class NodeBuilderWithSinks
/// \brief This node builder keeps track of the generated sink nodes.
class NodeBuilderWithSinks: public NodeBuilder {
void anchor() override;
protected:
SmallVector<ExplodedNode*, 2> sinksGenerated;
ProgramPoint &Location;
public:
NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx, ProgramPoint &L)
: NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
ExplodedNode *generateNode(ProgramStateRef State,
ExplodedNode *Pred,
const ProgramPointTag *Tag = nullptr) {
const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
return NodeBuilder::generateNode(LocalLoc, State, Pred);
}
ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
const ProgramPointTag *Tag = nullptr) {
const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
if (N && N->isSink())
sinksGenerated.push_back(N);
return N;
}
const SmallVectorImpl<ExplodedNode*> &getSinks() const {
return sinksGenerated;
}
};
/// \class StmtNodeBuilder
/// \brief This builder class is useful for generating nodes that resulted from
/// visiting a statement. The main difference from its parent NodeBuilder is
/// that it creates a statement specific ProgramPoint.
class StmtNodeBuilder: public NodeBuilder {
NodeBuilder *EnclosingBldr;
public:
/// \brief Constructs a StmtNodeBuilder. If the builder is going to process
/// nodes currently owned by another builder(with larger scope), use
/// Enclosing builder to transfer ownership.
StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx,
NodeBuilder *Enclosing = nullptr)
: NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
if (EnclosingBldr)
EnclosingBldr->takeNodes(SrcNode);
}
StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &Ctx,
NodeBuilder *Enclosing = nullptr)
: NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
if (EnclosingBldr)
for (const auto I : SrcSet)
EnclosingBldr->takeNodes(I);
}
~StmtNodeBuilder() override;
using NodeBuilder::generateNode;
using NodeBuilder::generateSink;
ExplodedNode *generateNode(const Stmt *S,
ExplodedNode *Pred,
ProgramStateRef St,
const ProgramPointTag *tag = nullptr,
ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
Pred->getLocationContext(), tag);
return NodeBuilder::generateNode(L, St, Pred);
}
ExplodedNode *generateSink(const Stmt *S,
ExplodedNode *Pred,
ProgramStateRef St,
const ProgramPointTag *tag = nullptr,
ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
Pred->getLocationContext(), tag);
return NodeBuilder::generateSink(L, St, Pred);
}
};
/// \brief BranchNodeBuilder is responsible for constructing the nodes
/// corresponding to the two branches of the if statement - true and false.
class BranchNodeBuilder: public NodeBuilder {
const CFGBlock *DstT;
const CFGBlock *DstF;
bool InFeasibleTrue;
bool InFeasibleFalse;
void anchor() override;
public:
BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
const NodeBuilderContext &C,
const CFGBlock *dstT, const CFGBlock *dstF)
: NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
// The branch node builder does not generate autotransitions.
// If there are no successors it means that both branches are infeasible.
takeNodes(SrcNode);
}
BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
const NodeBuilderContext &C,
const CFGBlock *dstT, const CFGBlock *dstF)
: NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
takeNodes(SrcSet);
}
ExplodedNode *generateNode(ProgramStateRef State, bool branch,
ExplodedNode *Pred);
const CFGBlock *getTargetBlock(bool branch) const {
return branch ? DstT : DstF;
}
void markInfeasible(bool branch) {
if (branch)
InFeasibleTrue = true;
else
InFeasibleFalse = true;
}
bool isFeasible(bool branch) {
return branch ? !InFeasibleTrue : !InFeasibleFalse;
}
};
class IndirectGotoNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const CFGBlock &DispatchBlock;
const Expr *E;
ExplodedNode *Pred;
public:
IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
: Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
class iterator {
friend class IndirectGotoNodeBuilder;
CFGBlock::const_succ_iterator I;
iterator(CFGBlock::const_succ_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
const LabelDecl *getLabel() const {
return cast<LabelStmt>((*I)->getLabel())->getDecl();
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(DispatchBlock.succ_begin()); }
iterator end() { return iterator(DispatchBlock.succ_end()); }
ExplodedNode *generateNode(const iterator &I,
ProgramStateRef State,
bool isSink = false);
const Expr *getTarget() const { return E; }
ProgramStateRef getState() const { return Pred->State; }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
};
class SwitchNodeBuilder {
CoreEngine& Eng;
const CFGBlock *Src;
const Expr *Condition;
ExplodedNode *Pred;
public:
SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
const Expr *condition, CoreEngine* eng)
: Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
class iterator {
friend class SwitchNodeBuilder;
CFGBlock::const_succ_reverse_iterator I;
iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
public:
iterator &operator++() { ++I; return *this; }
bool operator!=(const iterator &X) const { return I != X.I; }
bool operator==(const iterator &X) const { return I == X.I; }
const CaseStmt *getCase() const {
return cast<CaseStmt>((*I)->getLabel());
}
const CFGBlock *getBlock() const {
return *I;
}
};
iterator begin() { return iterator(Src->succ_rbegin()+1); }
iterator end() { return iterator(Src->succ_rend()); }
const SwitchStmt *getSwitch() const {
return cast<SwitchStmt>(Src->getTerminator());
}
ExplodedNode *generateCaseStmtNode(const iterator &I,
ProgramStateRef State);
ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
bool isSink = false);
const Expr *getCondition() const { return Condition; }
ProgramStateRef getState() const { return Pred->State; }
const LocationContext *getLocationContext() const {
return Pred->getLocationContext();
}
};
} // namespace ento
} // namespace clang
#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H