| |
| |
| # Defining a Mock Class # |
| |
| ## Mocking a Normal Class ## |
| |
| Given |
| ``` |
| class Foo { |
| ... |
| virtual ~Foo(); |
| virtual int GetSize() const = 0; |
| virtual string Describe(const char* name) = 0; |
| virtual string Describe(int type) = 0; |
| virtual bool Process(Bar elem, int count) = 0; |
| }; |
| ``` |
| (note that `~Foo()` **must** be virtual) we can define its mock as |
| ``` |
| #include "gmock/gmock.h" |
| |
| class MockFoo : public Foo { |
| MOCK_CONST_METHOD0(GetSize, int()); |
| MOCK_METHOD1(Describe, string(const char* name)); |
| MOCK_METHOD1(Describe, string(int type)); |
| MOCK_METHOD2(Process, bool(Bar elem, int count)); |
| }; |
| ``` |
| |
| To create a "nice" mock object which ignores all uninteresting calls, |
| or a "strict" mock object, which treats them as failures: |
| ``` |
| NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo. |
| StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo. |
| ``` |
| |
| ## Mocking a Class Template ## |
| |
| To mock |
| ``` |
| template <typename Elem> |
| class StackInterface { |
| public: |
| ... |
| virtual ~StackInterface(); |
| virtual int GetSize() const = 0; |
| virtual void Push(const Elem& x) = 0; |
| }; |
| ``` |
| (note that `~StackInterface()` **must** be virtual) just append `_T` to the `MOCK_*` macros: |
| ``` |
| template <typename Elem> |
| class MockStack : public StackInterface<Elem> { |
| public: |
| ... |
| MOCK_CONST_METHOD0_T(GetSize, int()); |
| MOCK_METHOD1_T(Push, void(const Elem& x)); |
| }; |
| ``` |
| |
| ## Specifying Calling Conventions for Mock Functions ## |
| |
| If your mock function doesn't use the default calling convention, you |
| can specify it by appending `_WITH_CALLTYPE` to any of the macros |
| described in the previous two sections and supplying the calling |
| convention as the first argument to the macro. For example, |
| ``` |
| MOCK_METHOD1_WITH_CALLTYPE(STDMETHODCALLTYPE, Foo, bool(int n)); |
| MOCK_CONST_METHOD2_WITH_CALLTYPE(STDMETHODCALLTYPE, Bar, int(double x, double y)); |
| ``` |
| where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows. |
| |
| # Using Mocks in Tests # |
| |
| The typical flow is: |
| 1. Import the Google Mock names you need to use. All Google Mock names are in the `testing` namespace unless they are macros or otherwise noted. |
| 1. Create the mock objects. |
| 1. Optionally, set the default actions of the mock objects. |
| 1. Set your expectations on the mock objects (How will they be called? What wil they do?). |
| 1. Exercise code that uses the mock objects; if necessary, check the result using [Google Test](../../googletest/) assertions. |
| 1. When a mock objects is destructed, Google Mock automatically verifies that all expectations on it have been satisfied. |
| |
| Here is an example: |
| ``` |
| using ::testing::Return; // #1 |
| |
| TEST(BarTest, DoesThis) { |
| MockFoo foo; // #2 |
| |
| ON_CALL(foo, GetSize()) // #3 |
| .WillByDefault(Return(1)); |
| // ... other default actions ... |
| |
| EXPECT_CALL(foo, Describe(5)) // #4 |
| .Times(3) |
| .WillRepeatedly(Return("Category 5")); |
| // ... other expectations ... |
| |
| EXPECT_EQ("good", MyProductionFunction(&foo)); // #5 |
| } // #6 |
| ``` |
| |
| # Setting Default Actions # |
| |
| Google Mock has a **built-in default action** for any function that |
| returns `void`, `bool`, a numeric value, or a pointer. |
| |
| To customize the default action for functions with return type `T` globally: |
| ``` |
| using ::testing::DefaultValue; |
| |
| // Sets the default value to be returned. T must be CopyConstructible. |
| DefaultValue<T>::Set(value); |
| // Sets a factory. Will be invoked on demand. T must be MoveConstructible. |
| // T MakeT(); |
| DefaultValue<T>::SetFactory(&MakeT); |
| // ... use the mocks ... |
| // Resets the default value. |
| DefaultValue<T>::Clear(); |
| ``` |
| |
| To customize the default action for a particular method, use `ON_CALL()`: |
| ``` |
| ON_CALL(mock_object, method(matchers)) |
| .With(multi_argument_matcher) ? |
| .WillByDefault(action); |
| ``` |
| |
| # Setting Expectations # |
| |
| `EXPECT_CALL()` sets **expectations** on a mock method (How will it be |
| called? What will it do?): |
| ``` |
| EXPECT_CALL(mock_object, method(matchers)) |
| .With(multi_argument_matcher) ? |
| .Times(cardinality) ? |
| .InSequence(sequences) * |
| .After(expectations) * |
| .WillOnce(action) * |
| .WillRepeatedly(action) ? |
| .RetiresOnSaturation(); ? |
| ``` |
| |
| If `Times()` is omitted, the cardinality is assumed to be: |
| |
| * `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`; |
| * `Times(n)` when there are `n WillOnce()`s but no `WillRepeatedly()`, where `n` >= 1; or |
| * `Times(AtLeast(n))` when there are `n WillOnce()`s and a `WillRepeatedly()`, where `n` >= 0. |
| |
| A method with no `EXPECT_CALL()` is free to be invoked _any number of times_, and the default action will be taken each time. |
| |
| # Matchers # |
| |
| A **matcher** matches a _single_ argument. You can use it inside |
| `ON_CALL()` or `EXPECT_CALL()`, or use it to validate a value |
| directly: |
| |
| | `EXPECT_THAT(value, matcher)` | Asserts that `value` matches `matcher`. | |
| |:------------------------------|:----------------------------------------| |
| | `ASSERT_THAT(value, matcher)` | The same as `EXPECT_THAT(value, matcher)`, except that it generates a **fatal** failure. | |
| |
| Built-in matchers (where `argument` is the function argument) are |
| divided into several categories: |
| |
| ## Wildcard ## |
| |`_`|`argument` can be any value of the correct type.| |
| |:--|:-----------------------------------------------| |
| |`A<type>()` or `An<type>()`|`argument` can be any value of type `type`. | |
| |
| ## Generic Comparison ## |
| |
| |`Eq(value)` or `value`|`argument == value`| |
| |:---------------------|:------------------| |
| |`Ge(value)` |`argument >= value`| |
| |`Gt(value)` |`argument > value` | |
| |`Le(value)` |`argument <= value`| |
| |`Lt(value)` |`argument < value` | |
| |`Ne(value)` |`argument != value`| |
| |`IsNull()` |`argument` is a `NULL` pointer (raw or smart).| |
| |`NotNull()` |`argument` is a non-null pointer (raw or smart).| |
| |`VariantWith<T>(m)` |`argument` is `variant<>` that holds the alternative of |
| type T with a value matching `m`.| |
| |`Ref(variable)` |`argument` is a reference to `variable`.| |
| |`TypedEq<type>(value)`|`argument` has type `type` and is equal to `value`. You may need to use this instead of `Eq(value)` when the mock function is overloaded.| |
| |
| Except `Ref()`, these matchers make a _copy_ of `value` in case it's |
| modified or destructed later. If the compiler complains that `value` |
| doesn't have a public copy constructor, try wrap it in `ByRef()`, |
| e.g. `Eq(ByRef(non_copyable_value))`. If you do that, make sure |
| `non_copyable_value` is not changed afterwards, or the meaning of your |
| matcher will be changed. |
| |
| ## Floating-Point Matchers ## |
| |
| |`DoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as unequal.| |
| |:-------------------|:----------------------------------------------------------------------------------------------| |
| |`FloatEq(a_float)` |`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as unequal. | |
| |`NanSensitiveDoubleEq(a_double)`|`argument` is a `double` value approximately equal to `a_double`, treating two NaNs as equal. | |
| |`NanSensitiveFloatEq(a_float)`|`argument` is a `float` value approximately equal to `a_float`, treating two NaNs as equal. | |
| |
| The above matchers use ULP-based comparison (the same as used in |
| [Google Test](../../googletest/)). They |
| automatically pick a reasonable error bound based on the absolute |
| value of the expected value. `DoubleEq()` and `FloatEq()` conform to |
| the IEEE standard, which requires comparing two NaNs for equality to |
| return false. The `NanSensitive*` version instead treats two NaNs as |
| equal, which is often what a user wants. |
| |
| |`DoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as unequal.| |
| |:------------------------------------|:--------------------------------------------------------------------------------------------------------------------| |
| |`FloatNear(a_float, max_abs_error)` |`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as unequal. | |
| |`NanSensitiveDoubleNear(a_double, max_abs_error)`|`argument` is a `double` value close to `a_double` (absolute error <= `max_abs_error`), treating two NaNs as equal. | |
| |`NanSensitiveFloatNear(a_float, max_abs_error)`|`argument` is a `float` value close to `a_float` (absolute error <= `max_abs_error`), treating two NaNs as equal. | |
| |
| ## String Matchers ## |
| |
| The `argument` can be either a C string or a C++ string object: |
| |
| |`ContainsRegex(string)`|`argument` matches the given regular expression.| |
| |:----------------------|:-----------------------------------------------| |
| |`EndsWith(suffix)` |`argument` ends with string `suffix`. | |
| |`HasSubstr(string)` |`argument` contains `string` as a sub-string. | |
| |`MatchesRegex(string)` |`argument` matches the given regular expression with the match starting at the first character and ending at the last character.| |
| |`StartsWith(prefix)` |`argument` starts with string `prefix`. | |
| |`StrCaseEq(string)` |`argument` is equal to `string`, ignoring case. | |
| |`StrCaseNe(string)` |`argument` is not equal to `string`, ignoring case.| |
| |`StrEq(string)` |`argument` is equal to `string`. | |
| |`StrNe(string)` |`argument` is not equal to `string`. | |
| |
| `ContainsRegex()` and `MatchesRegex()` use the regular expression |
| syntax defined |
| [here](../../googletest/docs/advanced.md#regular-expression-syntax). |
| `StrCaseEq()`, `StrCaseNe()`, `StrEq()`, and `StrNe()` work for wide |
| strings as well. |
| |
| ## Container Matchers ## |
| |
| Most STL-style containers support `==`, so you can use |
| `Eq(expected_container)` or simply `expected_container` to match a |
| container exactly. If you want to write the elements in-line, |
| match them more flexibly, or get more informative messages, you can use: |
| |
| | `ContainerEq(container)` | The same as `Eq(container)` except that the failure message also includes which elements are in one container but not the other. | |
| |:-------------------------|:---------------------------------------------------------------------------------------------------------------------------------| |
| | `Contains(e)` | `argument` contains an element that matches `e`, which can be either a value or a matcher. | |
| | `Each(e)` | `argument` is a container where _every_ element matches `e`, which can be either a value or a matcher. | |
| | `ElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, where the i-th element matches `ei`, which can be a value or a matcher. 0 to 10 arguments are allowed. | |
| | `ElementsAreArray({ e0, e1, ..., en })`, `ElementsAreArray(array)`, or `ElementsAreArray(array, count)` | The same as `ElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. | |
| | `IsEmpty()` | `argument` is an empty container (`container.empty()`). | |
| | `Pointwise(m, container)` | `argument` contains the same number of elements as in `container`, and for all i, (the i-th element in `argument`, the i-th element in `container`) match `m`, which is a matcher on 2-tuples. E.g. `Pointwise(Le(), upper_bounds)` verifies that each element in `argument` doesn't exceed the corresponding element in `upper_bounds`. See more detail below. | |
| | `SizeIs(m)` | `argument` is a container whose size matches `m`. E.g. `SizeIs(2)` or `SizeIs(Lt(2))`. | |
| | `UnorderedElementsAre(e0, e1, ..., en)` | `argument` has `n + 1` elements, and under some permutation each element matches an `ei` (for a different `i`), which can be a value or a matcher. 0 to 10 arguments are allowed. | |
| | `UnorderedElementsAreArray({ e0, e1, ..., en })`, `UnorderedElementsAreArray(array)`, or `UnorderedElementsAreArray(array, count)` | The same as `UnorderedElementsAre()` except that the expected element values/matchers come from an initializer list, STL-style container, or C-style array. | |
| | `WhenSorted(m)` | When `argument` is sorted using the `<` operator, it matches container matcher `m`. E.g. `WhenSorted(ElementsAre(1, 2, 3))` verifies that `argument` contains elements `1`, `2`, and `3`, ignoring order. | |
| | `WhenSortedBy(comparator, m)` | The same as `WhenSorted(m)`, except that the given comparator instead of `<` is used to sort `argument`. E.g. `WhenSortedBy(std::greater<int>(), ElementsAre(3, 2, 1))`. | |
| |
| Notes: |
| |
| * These matchers can also match: |
| 1. a native array passed by reference (e.g. in `Foo(const int (&a)[5])`), and |
| 1. an array passed as a pointer and a count (e.g. in `Bar(const T* buffer, int len)` -- see [Multi-argument Matchers](#Multiargument_Matchers.md)). |
| * The array being matched may be multi-dimensional (i.e. its elements can be arrays). |
| * `m` in `Pointwise(m, ...)` should be a matcher for `::testing::tuple<T, U>` where `T` and `U` are the element type of the actual container and the expected container, respectively. For example, to compare two `Foo` containers where `Foo` doesn't support `operator==` but has an `Equals()` method, one might write: |
| |
| ``` |
| using ::testing::get; |
| MATCHER(FooEq, "") { |
| return get<0>(arg).Equals(get<1>(arg)); |
| } |
| ... |
| EXPECT_THAT(actual_foos, Pointwise(FooEq(), expected_foos)); |
| ``` |
| |
| ## Member Matchers ## |
| |
| |`Field(&class::field, m)`|`argument.field` (or `argument->field` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.| |
| |:------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------| |
| |`Key(e)` |`argument.first` matches `e`, which can be either a value or a matcher. E.g. `Contains(Key(Le(5)))` can verify that a `map` contains a key `<= 5`.| |
| |`Pair(m1, m2)` |`argument` is an `std::pair` whose `first` field matches `m1` and `second` field matches `m2`. | |
| |`Property(&class::property, m)`|`argument.property()` (or `argument->property()` when `argument` is a plain pointer) matches matcher `m`, where `argument` is an object of type _class_.| |
| |
| ## Matching the Result of a Function or Functor ## |
| |
| |`ResultOf(f, m)`|`f(argument)` matches matcher `m`, where `f` is a function or functor.| |
| |:---------------|:---------------------------------------------------------------------| |
| |
| ## Pointer Matchers ## |
| |
| |`Pointee(m)`|`argument` (either a smart pointer or a raw pointer) points to a value that matches matcher `m`.| |
| |:-----------|:-----------------------------------------------------------------------------------------------| |
| |`WhenDynamicCastTo<T>(m)`| when `argument` is passed through `dynamic_cast<T>()`, it matches matcher `m`. | |
| |
| ## Multiargument Matchers ## |
| |
| Technically, all matchers match a _single_ value. A "multi-argument" |
| matcher is just one that matches a _tuple_. The following matchers can |
| be used to match a tuple `(x, y)`: |
| |
| |`Eq()`|`x == y`| |
| |:-----|:-------| |
| |`Ge()`|`x >= y`| |
| |`Gt()`|`x > y` | |
| |`Le()`|`x <= y`| |
| |`Lt()`|`x < y` | |
| |`Ne()`|`x != y`| |
| |
| You can use the following selectors to pick a subset of the arguments |
| (or reorder them) to participate in the matching: |
| |
| |`AllArgs(m)`|Equivalent to `m`. Useful as syntactic sugar in `.With(AllArgs(m))`.| |
| |:-----------|:-------------------------------------------------------------------| |
| |`Args<N1, N2, ..., Nk>(m)`|The tuple of the `k` selected (using 0-based indices) arguments matches `m`, e.g. `Args<1, 2>(Eq())`.| |
| |
| ## Composite Matchers ## |
| |
| You can make a matcher from one or more other matchers: |
| |
| |`AllOf(m1, m2, ..., mn)`|`argument` matches all of the matchers `m1` to `mn`.| |
| |:-----------------------|:---------------------------------------------------| |
| |`AnyOf(m1, m2, ..., mn)`|`argument` matches at least one of the matchers `m1` to `mn`.| |
| |`Not(m)` |`argument` doesn't match matcher `m`. | |
| |
| ## Adapters for Matchers ## |
| |
| |`MatcherCast<T>(m)`|casts matcher `m` to type `Matcher<T>`.| |
| |:------------------|:--------------------------------------| |
| |`SafeMatcherCast<T>(m)`| [safely casts](CookBook.md#casting-matchers) matcher `m` to type `Matcher<T>`. | |
| |`Truly(predicate)` |`predicate(argument)` returns something considered by C++ to be true, where `predicate` is a function or functor.| |
| |
| ## Matchers as Predicates ## |
| |
| |`Matches(m)(value)`|evaluates to `true` if `value` matches `m`. You can use `Matches(m)` alone as a unary functor.| |
| |:------------------|:---------------------------------------------------------------------------------------------| |
| |`ExplainMatchResult(m, value, result_listener)`|evaluates to `true` if `value` matches `m`, explaining the result to `result_listener`. | |
| |`Value(value, m)` |evaluates to `true` if `value` matches `m`. | |
| |
| ## Defining Matchers ## |
| |
| | `MATCHER(IsEven, "") { return (arg % 2) == 0; }` | Defines a matcher `IsEven()` to match an even number. | |
| |:-------------------------------------------------|:------------------------------------------------------| |
| | `MATCHER_P(IsDivisibleBy, n, "") { *result_listener << "where the remainder is " << (arg % n); return (arg % n) == 0; }` | Defines a macher `IsDivisibleBy(n)` to match a number divisible by `n`. | |
| | `MATCHER_P2(IsBetween, a, b, std::string(negation ? "isn't" : "is") + " between " + PrintToString(a) + " and " + PrintToString(b)) { return a <= arg && arg <= b; }` | Defines a matcher `IsBetween(a, b)` to match a value in the range [`a`, `b`]. | |
| |
| **Notes:** |
| |
| 1. The `MATCHER*` macros cannot be used inside a function or class. |
| 1. The matcher body must be _purely functional_ (i.e. it cannot have any side effect, and the result must not depend on anything other than the value being matched and the matcher parameters). |
| 1. You can use `PrintToString(x)` to convert a value `x` of any type to a string. |
| |
| ## Matchers as Test Assertions ## |
| |
| |`ASSERT_THAT(expression, m)`|Generates a [fatal failure](../../googletest/docs/primer.md#assertions) if the value of `expression` doesn't match matcher `m`.| |
| |:---------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------| |
| |`EXPECT_THAT(expression, m)`|Generates a non-fatal failure if the value of `expression` doesn't match matcher `m`. | |
| |
| # Actions # |
| |
| **Actions** specify what a mock function should do when invoked. |
| |
| ## Returning a Value ## |
| |
| |`Return()`|Return from a `void` mock function.| |
| |:---------|:----------------------------------| |
| |`Return(value)`|Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed.| |
| |`ReturnArg<N>()`|Return the `N`-th (0-based) argument.| |
| |`ReturnNew<T>(a1, ..., ak)`|Return `new T(a1, ..., ak)`; a different object is created each time.| |
| |`ReturnNull()`|Return a null pointer. | |
| |`ReturnPointee(ptr)`|Return the value pointed to by `ptr`.| |
| |`ReturnRef(variable)`|Return a reference to `variable`. | |
| |`ReturnRefOfCopy(value)`|Return a reference to a copy of `value`; the copy lives as long as the action.| |
| |
| ## Side Effects ## |
| |
| |`Assign(&variable, value)`|Assign `value` to variable.| |
| |:-------------------------|:--------------------------| |
| | `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. | |
| | `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. | |
| | `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. | |
| | `SetArgReferee<N>(value)` | Assign value to the variable referenced by the `N`-th (0-based) argument. | |
| |`SetArgPointee<N>(value)` |Assign `value` to the variable pointed by the `N`-th (0-based) argument.| |
| |`SetArgumentPointee<N>(value)`|Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0.| |
| |`SetArrayArgument<N>(first, last)`|Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range.| |
| |`SetErrnoAndReturn(error, value)`|Set `errno` to `error` and return `value`.| |
| |`Throw(exception)` |Throws the given exception, which can be any copyable value. Available since v1.1.0.| |
| |
| ## Using a Function or a Functor as an Action ## |
| |
| |`Invoke(f)`|Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor.| |
| |:----------|:-----------------------------------------------------------------------------------------------------------------| |
| |`Invoke(object_pointer, &class::method)`|Invoke the {method on the object with the arguments passed to the mock function. | |
| |`InvokeWithoutArgs(f)`|Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. | |
| |`InvokeWithoutArgs(object_pointer, &class::method)`|Invoke the method on the object, which takes no arguments. | |
| |`InvokeArgument<N>(arg1, arg2, ..., argk)`|Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments.| |
| |
| The return value of the invoked function is used as the return value |
| of the action. |
| |
| When defining a function or functor to be used with `Invoke*()`, you can declare any unused parameters as `Unused`: |
| ``` |
| double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); } |
| ... |
| EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance)); |
| ``` |
| |
| In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference, wrap it inside `ByRef()`. For example, |
| ``` |
| InvokeArgument<2>(5, string("Hi"), ByRef(foo)) |
| ``` |
| calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by value, and `foo` by reference. |
| |
| ## Default Action ## |
| |
| |`DoDefault()`|Do the default action (specified by `ON_CALL()` or the built-in one).| |
| |:------------|:--------------------------------------------------------------------| |
| |
| **Note:** due to technical reasons, `DoDefault()` cannot be used inside a composite action - trying to do so will result in a run-time error. |
| |
| ## Composite Actions ## |
| |
| |`DoAll(a1, a2, ..., an)`|Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void. | |
| |:-----------------------|:-----------------------------------------------------------------------------------------------------------------------------| |
| |`IgnoreResult(a)` |Perform action `a` and ignore its result. `a` must not return void. | |
| |`WithArg<N>(a)` |Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. | |
| |`WithArgs<N1, N2, ..., Nk>(a)`|Pass the selected (0-based) arguments of the mock function to action `a` and perform it. | |
| |`WithoutArgs(a)` |Perform action `a` without any arguments. | |
| |
| ## Defining Actions ## |
| |
| | `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. | |
| |:--------------------------------------|:---------------------------------------------------------------------------------------| |
| | `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. | |
| | `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. | |
| |
| The `ACTION*` macros cannot be used inside a function or class. |
| |
| # Cardinalities # |
| |
| These are used in `Times()` to specify how many times a mock function will be called: |
| |
| |`AnyNumber()`|The function can be called any number of times.| |
| |:------------|:----------------------------------------------| |
| |`AtLeast(n)` |The call is expected at least `n` times. | |
| |`AtMost(n)` |The call is expected at most `n` times. | |
| |`Between(m, n)`|The call is expected between `m` and `n` (inclusive) times.| |
| |`Exactly(n) or n`|The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0.| |
| |
| # Expectation Order # |
| |
| By default, the expectations can be matched in _any_ order. If some |
| or all expectations must be matched in a given order, there are two |
| ways to specify it. They can be used either independently or |
| together. |
| |
| ## The After Clause ## |
| |
| ``` |
| using ::testing::Expectation; |
| ... |
| Expectation init_x = EXPECT_CALL(foo, InitX()); |
| Expectation init_y = EXPECT_CALL(foo, InitY()); |
| EXPECT_CALL(foo, Bar()) |
| .After(init_x, init_y); |
| ``` |
| says that `Bar()` can be called only after both `InitX()` and |
| `InitY()` have been called. |
| |
| If you don't know how many pre-requisites an expectation has when you |
| write it, you can use an `ExpectationSet` to collect them: |
| |
| ``` |
| using ::testing::ExpectationSet; |
| ... |
| ExpectationSet all_inits; |
| for (int i = 0; i < element_count; i++) { |
| all_inits += EXPECT_CALL(foo, InitElement(i)); |
| } |
| EXPECT_CALL(foo, Bar()) |
| .After(all_inits); |
| ``` |
| says that `Bar()` can be called only after all elements have been |
| initialized (but we don't care about which elements get initialized |
| before the others). |
| |
| Modifying an `ExpectationSet` after using it in an `.After()` doesn't |
| affect the meaning of the `.After()`. |
| |
| ## Sequences ## |
| |
| When you have a long chain of sequential expectations, it's easier to |
| specify the order using **sequences**, which don't require you to given |
| each expectation in the chain a different name. <i>All expected<br> |
| calls</i> in the same sequence must occur in the order they are |
| specified. |
| |
| ``` |
| using ::testing::Sequence; |
| Sequence s1, s2; |
| ... |
| EXPECT_CALL(foo, Reset()) |
| .InSequence(s1, s2) |
| .WillOnce(Return(true)); |
| EXPECT_CALL(foo, GetSize()) |
| .InSequence(s1) |
| .WillOnce(Return(1)); |
| EXPECT_CALL(foo, Describe(A<const char*>())) |
| .InSequence(s2) |
| .WillOnce(Return("dummy")); |
| ``` |
| says that `Reset()` must be called before _both_ `GetSize()` _and_ |
| `Describe()`, and the latter two can occur in any order. |
| |
| To put many expectations in a sequence conveniently: |
| ``` |
| using ::testing::InSequence; |
| { |
| InSequence dummy; |
| |
| EXPECT_CALL(...)...; |
| EXPECT_CALL(...)...; |
| ... |
| EXPECT_CALL(...)...; |
| } |
| ``` |
| says that all expected calls in the scope of `dummy` must occur in |
| strict order. The name `dummy` is irrelevant.) |
| |
| # Verifying and Resetting a Mock # |
| |
| Google Mock will verify the expectations on a mock object when it is destructed, or you can do it earlier: |
| ``` |
| using ::testing::Mock; |
| ... |
| // Verifies and removes the expectations on mock_obj; |
| // returns true iff successful. |
| Mock::VerifyAndClearExpectations(&mock_obj); |
| ... |
| // Verifies and removes the expectations on mock_obj; |
| // also removes the default actions set by ON_CALL(); |
| // returns true iff successful. |
| Mock::VerifyAndClear(&mock_obj); |
| ``` |
| |
| You can also tell Google Mock that a mock object can be leaked and doesn't |
| need to be verified: |
| ``` |
| Mock::AllowLeak(&mock_obj); |
| ``` |
| |
| # Mock Classes # |
| |
| Google Mock defines a convenient mock class template |
| ``` |
| class MockFunction<R(A1, ..., An)> { |
| public: |
| MOCK_METHODn(Call, R(A1, ..., An)); |
| }; |
| ``` |
| See this [recipe](CookBook.md#using-check-points) for one application of it. |
| |
| # Flags # |
| |
| | `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. | |
| |:-------------------------------|:----------------------------------------------| |
| | `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. | |