blob: fd0832dd2c751cf183703cb5ceb2a30ea072f127 [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/*
* Pre-requisites: headers required by header of this unit
*/
#include "include/i2caux_interface.h"
#include "../engine.h"
#include "../i2c_engine.h"
#include "../i2c_hw_engine.h"
#include "../i2c_generic_hw_engine.h"
/*
* Header of this unit
*/
#include "i2c_hw_engine_dce80.h"
/*
* Post-requisites: headers required by this unit
*/
#include "dce/dce_8_0_d.h"
#include "dce/dce_8_0_sh_mask.h"
/*
* This unit
*/
enum dc_i2c_status {
DC_I2C_STATUS__DC_I2C_STATUS_IDLE,
DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW,
DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_HW
};
enum dc_i2c_arbitration {
DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL,
DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_HIGH
};
enum {
/* No timeout in HW
* (timeout implemented in SW by querying status) */
I2C_SETUP_TIME_LIMIT = 255,
I2C_HW_BUFFER_SIZE = 144
};
/*
* @brief
* Cast 'struct i2c_hw_engine *'
* to 'struct i2c_hw_engine_dce80 *'
*/
#define FROM_I2C_HW_ENGINE(ptr) \
container_of((ptr), struct i2c_hw_engine_dce80, base)
/*
* @brief
* Cast pointer to 'struct i2c_engine *'
* to pointer to 'struct i2c_hw_engine_dce80 *'
*/
#define FROM_I2C_ENGINE(ptr) \
FROM_I2C_HW_ENGINE(container_of((ptr), struct i2c_hw_engine, base))
/*
* @brief
* Cast pointer to 'struct engine *'
* to 'pointer to struct i2c_hw_engine_dce80 *'
*/
#define FROM_ENGINE(ptr) \
FROM_I2C_ENGINE(container_of((ptr), struct i2c_engine, base))
static void disable_i2c_hw_engine(
struct i2c_hw_engine_dce80 *engine)
{
const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP;
uint32_t value = 0;
struct dc_context *ctx = NULL;
ctx = engine->base.base.base.ctx;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_ENABLE);
dm_write_reg(ctx, addr, value);
}
static void release_engine(
struct engine *engine)
{
struct i2c_hw_engine_dce80 *hw_engine = FROM_ENGINE(engine);
struct i2c_engine *base = NULL;
bool safe_to_reset;
uint32_t value = 0;
base = &hw_engine->base.base;
/* Restore original HW engine speed */
base->funcs->set_speed(base, hw_engine->base.original_speed);
/* Release I2C */
{
value = dm_read_reg(engine->ctx, mmDC_I2C_ARBITRATION);
set_reg_field_value(
value,
1,
DC_I2C_ARBITRATION,
DC_I2C_SW_DONE_USING_I2C_REG);
dm_write_reg(engine->ctx, mmDC_I2C_ARBITRATION, value);
}
/* Reset HW engine */
{
uint32_t i2c_sw_status = 0;
value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS);
i2c_sw_status = get_reg_field_value(
value,
DC_I2C_SW_STATUS,
DC_I2C_SW_STATUS);
/* if used by SW, safe to reset */
safe_to_reset = (i2c_sw_status == 1);
}
{
value = dm_read_reg(engine->ctx, mmDC_I2C_CONTROL);
if (safe_to_reset)
set_reg_field_value(
value,
1,
DC_I2C_CONTROL,
DC_I2C_SOFT_RESET);
set_reg_field_value(
value,
1,
DC_I2C_CONTROL,
DC_I2C_SW_STATUS_RESET);
dm_write_reg(engine->ctx, mmDC_I2C_CONTROL, value);
}
/* HW I2c engine - clock gating feature */
if (!hw_engine->engine_keep_power_up_count)
disable_i2c_hw_engine(hw_engine);
}
static void destruct(
struct i2c_hw_engine_dce80 *engine)
{
dal_i2c_hw_engine_destruct(&engine->base);
}
static void destroy(
struct i2c_engine **i2c_engine)
{
struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(*i2c_engine);
destruct(engine);
kfree(engine);
*i2c_engine = NULL;
}
static bool setup_engine(
struct i2c_engine *i2c_engine)
{
uint32_t value = 0;
struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine);
/* Program pin select */
{
const uint32_t addr = mmDC_I2C_CONTROL;
value = dm_read_reg(i2c_engine->base.ctx, addr);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_GO);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SOFT_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SEND_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SW_STATUS_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_TRANSACTION_COUNT);
set_reg_field_value(
value,
engine->engine_id,
DC_I2C_CONTROL,
DC_I2C_DDC_SELECT);
dm_write_reg(i2c_engine->base.ctx, addr, value);
}
/* Program time limit */
{
const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP;
value = dm_read_reg(i2c_engine->base.ctx, addr);
set_reg_field_value(
value,
I2C_SETUP_TIME_LIMIT,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_TIME_LIMIT);
set_reg_field_value(
value,
1,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_ENABLE);
dm_write_reg(i2c_engine->base.ctx, addr, value);
}
/* Program HW priority
* set to High - interrupt software I2C at any time
* Enable restart of SW I2C that was interrupted by HW
* disable queuing of software while I2C is in use by HW */
{
value = dm_read_reg(i2c_engine->base.ctx,
mmDC_I2C_ARBITRATION);
set_reg_field_value(
value,
0,
DC_I2C_ARBITRATION,
DC_I2C_NO_QUEUED_SW_GO);
set_reg_field_value(
value,
DC_I2C_ARBITRATION__DC_I2C_SW_PRIORITY_NORMAL,
DC_I2C_ARBITRATION,
DC_I2C_SW_PRIORITY);
dm_write_reg(i2c_engine->base.ctx,
mmDC_I2C_ARBITRATION, value);
}
return true;
}
static uint32_t get_speed(
const struct i2c_engine *i2c_engine)
{
const struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine);
const uint32_t addr = engine->addr.DC_I2C_DDCX_SPEED;
uint32_t pre_scale = 0;
uint32_t value = dm_read_reg(i2c_engine->base.ctx, addr);
pre_scale = get_reg_field_value(
value,
DC_I2C_DDC1_SPEED,
DC_I2C_DDC1_PRESCALE);
/* [anaumov] it seems following is unnecessary */
/*ASSERT(value.bits.DC_I2C_DDC1_PRESCALE);*/
return pre_scale ?
engine->reference_frequency / pre_scale :
engine->base.default_speed;
}
static void set_speed(
struct i2c_engine *i2c_engine,
uint32_t speed)
{
struct i2c_hw_engine_dce80 *engine = FROM_I2C_ENGINE(i2c_engine);
if (speed) {
const uint32_t addr = engine->addr.DC_I2C_DDCX_SPEED;
uint32_t value = dm_read_reg(i2c_engine->base.ctx, addr);
set_reg_field_value(
value,
engine->reference_frequency / speed,
DC_I2C_DDC1_SPEED,
DC_I2C_DDC1_PRESCALE);
set_reg_field_value(
value,
2,
DC_I2C_DDC1_SPEED,
DC_I2C_DDC1_THRESHOLD);
dm_write_reg(i2c_engine->base.ctx, addr, value);
}
}
static inline void reset_hw_engine(struct engine *engine)
{
uint32_t value = dm_read_reg(engine->ctx, mmDC_I2C_CONTROL);
set_reg_field_value(
value,
1,
DC_I2C_CONTROL,
DC_I2C_SOFT_RESET);
set_reg_field_value(
value,
1,
DC_I2C_CONTROL,
DC_I2C_SW_STATUS_RESET);
dm_write_reg(engine->ctx, mmDC_I2C_CONTROL, value);
}
static bool is_hw_busy(struct engine *engine)
{
uint32_t i2c_sw_status = 0;
uint32_t value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS);
i2c_sw_status = get_reg_field_value(
value,
DC_I2C_SW_STATUS,
DC_I2C_SW_STATUS);
if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_IDLE)
return false;
reset_hw_engine(engine);
value = dm_read_reg(engine->ctx, mmDC_I2C_SW_STATUS);
i2c_sw_status = get_reg_field_value(
value,
DC_I2C_SW_STATUS,
DC_I2C_SW_STATUS);
return i2c_sw_status != DC_I2C_STATUS__DC_I2C_STATUS_IDLE;
}
/*
* @brief
* DC_GPIO_DDC MM register offsets
*/
static const uint32_t transaction_addr[] = {
mmDC_I2C_TRANSACTION0,
mmDC_I2C_TRANSACTION1,
mmDC_I2C_TRANSACTION2,
mmDC_I2C_TRANSACTION3
};
static bool process_transaction(
struct i2c_hw_engine_dce80 *engine,
struct i2c_request_transaction_data *request)
{
uint32_t length = request->length;
uint8_t *buffer = request->data;
bool last_transaction = false;
uint32_t value = 0;
struct dc_context *ctx = NULL;
ctx = engine->base.base.base.ctx;
{
const uint32_t addr =
transaction_addr[engine->transaction_count];
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
1,
DC_I2C_TRANSACTION0,
DC_I2C_STOP_ON_NACK0);
set_reg_field_value(
value,
1,
DC_I2C_TRANSACTION0,
DC_I2C_START0);
if ((engine->transaction_count == 3) ||
(request->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
(request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) {
set_reg_field_value(
value,
1,
DC_I2C_TRANSACTION0,
DC_I2C_STOP0);
last_transaction = true;
} else
set_reg_field_value(
value,
0,
DC_I2C_TRANSACTION0,
DC_I2C_STOP0);
set_reg_field_value(
value,
(0 != (request->action &
I2CAUX_TRANSACTION_ACTION_I2C_READ)),
DC_I2C_TRANSACTION0,
DC_I2C_RW0);
set_reg_field_value(
value,
length,
DC_I2C_TRANSACTION0,
DC_I2C_COUNT0);
dm_write_reg(ctx, addr, value);
}
/* Write the I2C address and I2C data
* into the hardware circular buffer, one byte per entry.
* As an example, the 7-bit I2C slave address for CRT monitor
* for reading DDC/EDID information is 0b1010001.
* For an I2C send operation, the LSB must be programmed to 0;
* for I2C receive operation, the LSB must be programmed to 1. */
{
value = 0;
set_reg_field_value(
value,
false,
DC_I2C_DATA,
DC_I2C_DATA_RW);
set_reg_field_value(
value,
request->address,
DC_I2C_DATA,
DC_I2C_DATA);
if (engine->transaction_count == 0) {
set_reg_field_value(
value,
0,
DC_I2C_DATA,
DC_I2C_INDEX);
/*enable index write*/
set_reg_field_value(
value,
1,
DC_I2C_DATA,
DC_I2C_INDEX_WRITE);
}
dm_write_reg(ctx, mmDC_I2C_DATA, value);
if (!(request->action & I2CAUX_TRANSACTION_ACTION_I2C_READ)) {
set_reg_field_value(
value,
0,
DC_I2C_DATA,
DC_I2C_INDEX_WRITE);
while (length) {
set_reg_field_value(
value,
*buffer++,
DC_I2C_DATA,
DC_I2C_DATA);
dm_write_reg(ctx, mmDC_I2C_DATA, value);
--length;
}
}
}
++engine->transaction_count;
engine->buffer_used_bytes += length + 1;
return last_transaction;
}
static void execute_transaction(
struct i2c_hw_engine_dce80 *engine)
{
uint32_t value = 0;
struct dc_context *ctx = NULL;
ctx = engine->base.base.base.ctx;
{
const uint32_t addr = engine->addr.DC_I2C_DDCX_SETUP;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_DATA_DRIVE_EN);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_CLK_DRIVE_EN);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_DATA_DRIVE_SEL);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_INTRA_TRANSACTION_DELAY);
set_reg_field_value(
value,
0,
DC_I2C_DDC1_SETUP,
DC_I2C_DDC1_INTRA_BYTE_DELAY);
dm_write_reg(ctx, addr, value);
}
{
const uint32_t addr = mmDC_I2C_CONTROL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SOFT_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SW_STATUS_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_SEND_RESET);
set_reg_field_value(
value,
0,
DC_I2C_CONTROL,
DC_I2C_GO);
set_reg_field_value(
value,
engine->transaction_count - 1,
DC_I2C_CONTROL,
DC_I2C_TRANSACTION_COUNT);
dm_write_reg(ctx, addr, value);
}
/* start I2C transfer */
{
const uint32_t addr = mmDC_I2C_CONTROL;
value = dm_read_reg(ctx, addr);
set_reg_field_value(
value,
1,
DC_I2C_CONTROL,
DC_I2C_GO);
dm_write_reg(ctx, addr, value);
}
/* all transactions were executed and HW buffer became empty
* (even though it actually happens when status becomes DONE) */
engine->transaction_count = 0;
engine->buffer_used_bytes = 0;
}
static void submit_channel_request(
struct i2c_engine *engine,
struct i2c_request_transaction_data *request)
{
request->status = I2C_CHANNEL_OPERATION_SUCCEEDED;
if (!process_transaction(FROM_I2C_ENGINE(engine), request))
return;
if (is_hw_busy(&engine->base)) {
request->status = I2C_CHANNEL_OPERATION_ENGINE_BUSY;
return;
}
execute_transaction(FROM_I2C_ENGINE(engine));
}
static void process_channel_reply(
struct i2c_engine *engine,
struct i2c_reply_transaction_data *reply)
{
uint32_t length = reply->length;
uint8_t *buffer = reply->data;
uint32_t value = 0;
/*set index*/
set_reg_field_value(
value,
length - 1,
DC_I2C_DATA,
DC_I2C_INDEX);
set_reg_field_value(
value,
1,
DC_I2C_DATA,
DC_I2C_DATA_RW);
set_reg_field_value(
value,
1,
DC_I2C_DATA,
DC_I2C_INDEX_WRITE);
dm_write_reg(engine->base.ctx, mmDC_I2C_DATA, value);
while (length) {
/* after reading the status,
* if the I2C operation executed successfully
* (i.e. DC_I2C_STATUS_DONE = 1) then the I2C controller
* should read data bytes from I2C circular data buffer */
value = dm_read_reg(engine->base.ctx, mmDC_I2C_DATA);
*buffer++ = get_reg_field_value(
value,
DC_I2C_DATA,
DC_I2C_DATA);
--length;
}
}
static enum i2c_channel_operation_result get_channel_status(
struct i2c_engine *engine,
uint8_t *returned_bytes)
{
uint32_t i2c_sw_status = 0;
uint32_t value = dm_read_reg(engine->base.ctx, mmDC_I2C_SW_STATUS);
i2c_sw_status = get_reg_field_value(
value,
DC_I2C_SW_STATUS,
DC_I2C_SW_STATUS);
if (i2c_sw_status == DC_I2C_STATUS__DC_I2C_STATUS_USED_BY_SW)
return I2C_CHANNEL_OPERATION_ENGINE_BUSY;
else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_STOPPED_ON_NACK_MASK)
return I2C_CHANNEL_OPERATION_NO_RESPONSE;
else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_TIMEOUT_MASK)
return I2C_CHANNEL_OPERATION_TIMEOUT;
else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_ABORTED_MASK)
return I2C_CHANNEL_OPERATION_FAILED;
else if (value & DC_I2C_SW_STATUS__DC_I2C_SW_DONE_MASK)
return I2C_CHANNEL_OPERATION_SUCCEEDED;
/*
* this is the case when HW used for communication, I2C_SW_STATUS
* could be zero
*/
return I2C_CHANNEL_OPERATION_SUCCEEDED;
}
static uint32_t get_hw_buffer_available_size(
const struct i2c_hw_engine *engine)
{
return I2C_HW_BUFFER_SIZE -
FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes;
}
static uint32_t get_transaction_timeout(
const struct i2c_hw_engine *engine,
uint32_t length)
{
uint32_t speed = engine->base.funcs->get_speed(&engine->base);
uint32_t period_timeout;
uint32_t num_of_clock_stretches;
if (!speed)
return 0;
period_timeout = (1000 * TRANSACTION_TIMEOUT_IN_I2C_CLOCKS) / speed;
num_of_clock_stretches = 1 + (length << 3) + 1;
num_of_clock_stretches +=
(FROM_I2C_HW_ENGINE(engine)->buffer_used_bytes << 3) +
(FROM_I2C_HW_ENGINE(engine)->transaction_count << 1);
return period_timeout * num_of_clock_stretches;
}
/*
* @brief
* DC_I2C_DDC1_SETUP MM register offsets
*
* @note
* The indices of this offset array are DDC engine IDs
*/
static const int32_t ddc_setup_offset[] = {
mmDC_I2C_DDC1_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 1 */
mmDC_I2C_DDC2_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 2 */
mmDC_I2C_DDC3_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 3 */
mmDC_I2C_DDC4_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 4 */
mmDC_I2C_DDC5_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 5 */
mmDC_I2C_DDC6_SETUP - mmDC_I2C_DDC1_SETUP, /* DDC Engine 6 */
mmDC_I2C_DDCVGA_SETUP - mmDC_I2C_DDC1_SETUP /* DDC Engine 7 */
};
/*
* @brief
* DC_I2C_DDC1_SPEED MM register offsets
*
* @note
* The indices of this offset array are DDC engine IDs
*/
static const int32_t ddc_speed_offset[] = {
mmDC_I2C_DDC1_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 1 */
mmDC_I2C_DDC2_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 2 */
mmDC_I2C_DDC3_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 3 */
mmDC_I2C_DDC4_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 4 */
mmDC_I2C_DDC5_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 5 */
mmDC_I2C_DDC6_SPEED - mmDC_I2C_DDC1_SPEED, /* DDC Engine 6 */
mmDC_I2C_DDCVGA_SPEED - mmDC_I2C_DDC1_SPEED /* DDC Engine 7 */
};
static const struct i2c_engine_funcs i2c_engine_funcs = {
.destroy = destroy,
.get_speed = get_speed,
.set_speed = set_speed,
.setup_engine = setup_engine,
.submit_channel_request = submit_channel_request,
.process_channel_reply = process_channel_reply,
.get_channel_status = get_channel_status,
.acquire_engine = dal_i2c_hw_engine_acquire_engine,
};
static const struct engine_funcs engine_funcs = {
.release_engine = release_engine,
.get_engine_type = dal_i2c_hw_engine_get_engine_type,
.acquire = dal_i2c_engine_acquire,
.submit_request = dal_i2c_hw_engine_submit_request,
};
static const struct i2c_hw_engine_funcs i2c_hw_engine_funcs = {
.get_hw_buffer_available_size =
get_hw_buffer_available_size,
.get_transaction_timeout =
get_transaction_timeout,
.wait_on_operation_result =
dal_i2c_hw_engine_wait_on_operation_result,
};
static void construct(
struct i2c_hw_engine_dce80 *engine,
const struct i2c_hw_engine_dce80_create_arg *arg)
{
dal_i2c_hw_engine_construct(&engine->base, arg->ctx);
engine->base.base.base.funcs = &engine_funcs;
engine->base.base.funcs = &i2c_engine_funcs;
engine->base.funcs = &i2c_hw_engine_funcs;
engine->base.default_speed = arg->default_speed;
engine->addr.DC_I2C_DDCX_SETUP =
mmDC_I2C_DDC1_SETUP + ddc_setup_offset[arg->engine_id];
engine->addr.DC_I2C_DDCX_SPEED =
mmDC_I2C_DDC1_SPEED + ddc_speed_offset[arg->engine_id];
engine->engine_id = arg->engine_id;
engine->reference_frequency = arg->reference_frequency;
engine->buffer_used_bytes = 0;
engine->transaction_count = 0;
engine->engine_keep_power_up_count = 1;
}
struct i2c_engine *dal_i2c_hw_engine_dce80_create(
const struct i2c_hw_engine_dce80_create_arg *arg)
{
struct i2c_hw_engine_dce80 *engine;
if (!arg) {
BREAK_TO_DEBUGGER();
return NULL;
}
if ((arg->engine_id >= sizeof(ddc_setup_offset) / sizeof(int32_t)) ||
(arg->engine_id >= sizeof(ddc_speed_offset) / sizeof(int32_t)) ||
!arg->reference_frequency) {
BREAK_TO_DEBUGGER();
return NULL;
}
engine = kzalloc(sizeof(struct i2c_hw_engine_dce80), GFP_KERNEL);
if (!engine) {
BREAK_TO_DEBUGGER();
return NULL;
}
construct(engine, arg);
return &engine->base.base;
}