| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "hf/fdt_handler.h" |
| |
| #include "hf/boot_params.h" |
| #include "hf/check.h" |
| #include "hf/cpu.h" |
| #include "hf/dlog.h" |
| #include "hf/fdt.h" |
| #include "hf/layout.h" |
| #include "hf/mm.h" |
| #include "hf/std.h" |
| |
| static bool fdt_read_number(const struct fdt_node *node, const char *name, |
| uint64_t *value) |
| { |
| const char *data; |
| uint32_t size; |
| |
| if (!fdt_read_property(node, name, &data, &size)) { |
| return false; |
| } |
| |
| switch (size) { |
| case sizeof(uint32_t): |
| case sizeof(uint64_t): |
| CHECK(fdt_parse_number(data, size, value)); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool fdt_write_number(struct fdt_node *node, const char *name, |
| uint64_t value) |
| { |
| const char *data; |
| uint32_t size; |
| union { |
| volatile uint64_t v; |
| char a[8]; |
| } t; |
| |
| if (!fdt_read_property(node, name, &data, &size)) { |
| return false; |
| } |
| |
| switch (size) { |
| case sizeof(uint32_t): |
| *(uint32_t *)data = be32toh(value); |
| break; |
| |
| case sizeof(uint64_t): |
| t.v = be64toh(value); |
| memcpy_s((void *)data, size, t.a, sizeof(uint64_t)); |
| break; |
| |
| default: |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Finds the memory region where initrd is stored. |
| */ |
| bool fdt_find_initrd(const struct fdt_node *root, paddr_t *begin, paddr_t *end) |
| { |
| struct fdt_node n = *root; |
| uint64_t initrd_begin; |
| uint64_t initrd_end; |
| |
| if (!fdt_find_child(&n, "chosen")) { |
| dlog("Unable to find 'chosen'\n"); |
| return false; |
| } |
| |
| if (!fdt_read_number(&n, "linux,initrd-start", &initrd_begin)) { |
| dlog("Unable to read linux,initrd-start\n"); |
| return false; |
| } |
| |
| if (!fdt_read_number(&n, "linux,initrd-end", &initrd_end)) { |
| dlog("Unable to read linux,initrd-end\n"); |
| return false; |
| } |
| |
| *begin = pa_init(initrd_begin); |
| *end = pa_init(initrd_end); |
| |
| return true; |
| } |
| |
| bool fdt_find_cpus(const struct fdt_node *root, cpu_id_t *cpu_ids, |
| size_t *cpu_count) |
| { |
| struct fdt_node n = *root; |
| const char *name; |
| uint64_t address_size; |
| |
| *cpu_count = 0; |
| |
| if (!fdt_find_child(&n, "cpus")) { |
| dlog("Unable to find 'cpus'\n"); |
| return false; |
| } |
| |
| if (fdt_read_number(&n, "#address-cells", &address_size)) { |
| address_size *= sizeof(uint32_t); |
| } else { |
| address_size = sizeof(uint32_t); |
| } |
| |
| if (!fdt_first_child(&n, &name)) { |
| return false; |
| } |
| |
| do { |
| const char *data; |
| uint32_t size; |
| |
| if (!fdt_read_property(&n, "device_type", &data, &size) || |
| size != sizeof("cpu") || |
| memcmp(data, "cpu", sizeof("cpu")) != 0 || |
| !fdt_read_property(&n, "reg", &data, &size)) { |
| continue; |
| } |
| |
| /* Get all entries for this CPU. */ |
| while (size >= address_size) { |
| uint64_t value; |
| |
| if (*cpu_count >= MAX_CPUS) { |
| dlog("Found more than %d CPUs\n", MAX_CPUS); |
| return false; |
| } |
| |
| if (!fdt_parse_number(data, address_size, &value)) { |
| dlog("Could not parse CPU id\n"); |
| return false; |
| } |
| cpu_ids[(*cpu_count)++] = value; |
| |
| size -= address_size; |
| data += address_size; |
| } |
| } while (fdt_next_sibling(&n, &name)); |
| |
| return true; |
| } |
| |
| bool fdt_find_memory_ranges(const struct fdt_node *root, struct boot_params *p) |
| { |
| struct fdt_node n = *root; |
| const char *name; |
| uint64_t address_size; |
| uint64_t size_size; |
| uint64_t entry_size; |
| size_t mem_range_index = 0; |
| |
| /* Get the sizes of memory range addresses and sizes. */ |
| if (fdt_read_number(&n, "#address-cells", &address_size)) { |
| address_size *= sizeof(uint32_t); |
| } else { |
| address_size = sizeof(uint32_t); |
| } |
| |
| if (fdt_read_number(&n, "#size-cells", &size_size)) { |
| size_size *= sizeof(uint32_t); |
| } else { |
| size_size = sizeof(uint32_t); |
| } |
| |
| entry_size = address_size + size_size; |
| |
| /* Look for nodes with the device_type set to "memory". */ |
| if (!fdt_first_child(&n, &name)) { |
| return false; |
| } |
| |
| do { |
| const char *data; |
| uint32_t size; |
| |
| if (!fdt_read_property(&n, "device_type", &data, &size) || |
| size != sizeof("memory") || |
| memcmp(data, "memory", sizeof("memory")) != 0 || |
| !fdt_read_property(&n, "reg", &data, &size)) { |
| continue; |
| } |
| |
| /* Traverse all memory ranges within this node. */ |
| while (size >= entry_size) { |
| uintpaddr_t addr; |
| size_t len; |
| |
| CHECK(fdt_parse_number(data, address_size, &addr)); |
| CHECK(fdt_parse_number(data + address_size, size_size, |
| &len)); |
| |
| if (mem_range_index < MAX_MEM_RANGES) { |
| p->mem_ranges[mem_range_index].begin = |
| pa_init(addr); |
| p->mem_ranges[mem_range_index].end = |
| pa_init(addr + len); |
| ++mem_range_index; |
| } else { |
| dlog("Found memory range %u in FDT but only " |
| "%u supported, ignoring additional range " |
| "of size %u.\n", |
| mem_range_index, MAX_MEM_RANGES, len); |
| } |
| |
| size -= entry_size; |
| data += entry_size; |
| } |
| } while (fdt_next_sibling(&n, &name)); |
| p->mem_ranges_count = mem_range_index; |
| |
| /* TODO: Check for "reserved-memory" nodes. */ |
| |
| return true; |
| } |
| |
| struct fdt_header *fdt_map(struct mm_stage1_locked stage1_locked, |
| paddr_t fdt_addr, struct fdt_node *n, |
| struct mpool *ppool) |
| { |
| struct fdt_header *fdt; |
| |
| /* Map the fdt header in. */ |
| fdt = mm_identity_map(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_header_size()), MM_MODE_R, |
| ppool); |
| if (!fdt) { |
| dlog("Unable to map FDT header.\n"); |
| return NULL; |
| } |
| |
| if (!fdt_root_node(n, fdt)) { |
| dlog("FDT failed validation.\n"); |
| goto fail; |
| } |
| |
| /* Map the rest of the fdt in. */ |
| fdt = mm_identity_map(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_total_size(fdt)), MM_MODE_R, |
| ppool); |
| if (!fdt) { |
| dlog("Unable to map full FDT.\n"); |
| goto fail; |
| } |
| |
| return fdt; |
| |
| fail: |
| mm_unmap(stage1_locked, fdt_addr, pa_add(fdt_addr, fdt_header_size()), |
| ppool); |
| return NULL; |
| } |
| |
| bool fdt_unmap(struct mm_stage1_locked stage1_locked, struct fdt_header *fdt, |
| struct mpool *ppool) |
| { |
| paddr_t fdt_addr = pa_from_va(va_from_ptr(fdt)); |
| |
| return mm_unmap(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_total_size(fdt)), ppool); |
| } |
| |
| bool fdt_patch(struct mm_stage1_locked stage1_locked, paddr_t fdt_addr, |
| struct boot_params_update *p, struct mpool *ppool) |
| { |
| struct fdt_header *fdt; |
| struct fdt_node n; |
| bool ret = false; |
| size_t i; |
| |
| /* Map the fdt header in. */ |
| fdt = mm_identity_map(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_header_size()), MM_MODE_R, |
| ppool); |
| if (!fdt) { |
| dlog("Unable to map FDT header.\n"); |
| return false; |
| } |
| |
| if (!fdt_root_node(&n, fdt)) { |
| dlog("FDT failed validation.\n"); |
| goto err_unmap_fdt_header; |
| } |
| |
| /* Map the fdt (+ a page) in r/w mode in preparation for updating it. */ |
| fdt = mm_identity_map(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_total_size(fdt) + PAGE_SIZE), |
| MM_MODE_R | MM_MODE_W, ppool); |
| if (!fdt) { |
| dlog("Unable to map FDT in r/w mode.\n"); |
| goto err_unmap_fdt_header; |
| } |
| |
| if (!fdt_find_child(&n, "")) { |
| dlog("Unable to find FDT root node.\n"); |
| goto out_unmap_fdt; |
| } |
| |
| if (!fdt_find_child(&n, "chosen")) { |
| dlog("Unable to find 'chosen'\n"); |
| goto out_unmap_fdt; |
| } |
| |
| /* Patch FDT to point to new ramdisk. */ |
| if (!fdt_write_number(&n, "linux,initrd-start", |
| pa_addr(p->initrd_begin))) { |
| dlog("Unable to write linux,initrd-start\n"); |
| goto out_unmap_fdt; |
| } |
| |
| if (!fdt_write_number(&n, "linux,initrd-end", pa_addr(p->initrd_end))) { |
| dlog("Unable to write linux,initrd-end\n"); |
| goto out_unmap_fdt; |
| } |
| |
| /* |
| * Patch FDT to reserve hypervisor memory so the primary VM doesn't try |
| * to use it. |
| */ |
| fdt_add_mem_reservation( |
| fdt, pa_addr(layout_text_begin()), |
| pa_difference(layout_text_begin(), layout_text_end())); |
| fdt_add_mem_reservation( |
| fdt, pa_addr(layout_rodata_begin()), |
| pa_difference(layout_rodata_begin(), layout_rodata_end())); |
| fdt_add_mem_reservation( |
| fdt, pa_addr(layout_data_begin()), |
| pa_difference(layout_data_begin(), layout_data_end())); |
| |
| /* Patch FDT to reserve memory for secondary VMs. */ |
| for (i = 0; i < p->reserved_ranges_count; ++i) { |
| fdt_add_mem_reservation( |
| fdt, pa_addr(p->reserved_ranges[i].begin), |
| pa_addr(p->reserved_ranges[i].end) - |
| pa_addr(p->reserved_ranges[i].begin)); |
| } |
| |
| ret = true; |
| |
| out_unmap_fdt: |
| /* Unmap FDT. */ |
| if (!mm_unmap(stage1_locked, fdt_addr, |
| pa_add(fdt_addr, fdt_total_size(fdt) + PAGE_SIZE), |
| ppool)) { |
| dlog("Unable to unmap writable FDT.\n"); |
| return false; |
| } |
| return ret; |
| |
| err_unmap_fdt_header: |
| mm_unmap(stage1_locked, fdt_addr, pa_add(fdt_addr, fdt_header_size()), |
| ppool); |
| return false; |
| } |