| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "hf/mm.h" |
| |
| #include <stdatomic.h> |
| #include <stdint.h> |
| |
| #include "hf/check.h" |
| #include "hf/dlog.h" |
| #include "hf/layout.h" |
| #include "hf/plat/console.h" |
| #include "hf/static_assert.h" |
| |
| /** |
| * This file has functions for managing the level 1 and 2 page tables used by |
| * Hafnium. There is a level 1 mapping used by Hafnium itself to access memory, |
| * and then a level 2 mapping per VM. The design assumes that all page tables |
| * contain only 1-1 mappings, aligned on the block boundaries. |
| */ |
| |
| /* |
| * For stage 2, the input is an intermediate physical addresses rather than a |
| * virtual address so: |
| */ |
| static_assert( |
| sizeof(ptable_addr_t) == sizeof(uintpaddr_t), |
| "Currently, the same code manages the stage 1 and stage 2 page tables " |
| "which only works if the virtual and intermediate physical addresses " |
| "are the same size. It looks like that assumption might not be holding " |
| "so we need to check that everything is going to be ok."); |
| |
| static struct mm_ptable ptable; |
| static struct spinlock ptable_lock; |
| |
| static bool mm_stage2_invalidate = false; |
| |
| /** |
| * After calling this function, modifications to stage-2 page tables will use |
| * break-before-make and invalidate the TLB for the affected range. |
| */ |
| void mm_vm_enable_invalidation(void) |
| { |
| mm_stage2_invalidate = true; |
| } |
| |
| /** |
| * Get the page table from the physical address. |
| */ |
| static struct mm_page_table *mm_page_table_from_pa(paddr_t pa) |
| { |
| return ptr_from_va(va_from_pa(pa)); |
| } |
| |
| /** |
| * Rounds an address down to a page boundary. |
| */ |
| static ptable_addr_t mm_round_down_to_page(ptable_addr_t addr) |
| { |
| return addr & ~((ptable_addr_t)(PAGE_SIZE - 1)); |
| } |
| |
| /** |
| * Rounds an address up to a page boundary. |
| */ |
| static ptable_addr_t mm_round_up_to_page(ptable_addr_t addr) |
| { |
| return mm_round_down_to_page(addr + PAGE_SIZE - 1); |
| } |
| |
| /** |
| * Calculates the size of the address space represented by a page table entry at |
| * the given level. |
| */ |
| static size_t mm_entry_size(uint8_t level) |
| { |
| return UINT64_C(1) << (PAGE_BITS + level * PAGE_LEVEL_BITS); |
| } |
| |
| /** |
| * Gets the address of the start of the next block of the given size. The size |
| * must be a power of two. |
| */ |
| static ptable_addr_t mm_start_of_next_block(ptable_addr_t addr, |
| size_t block_size) |
| { |
| return (addr + block_size) & ~(block_size - 1); |
| } |
| |
| /** |
| * Gets the physical address of the start of the next block of the given size. |
| * The size must be a power of two. |
| */ |
| static paddr_t mm_pa_start_of_next_block(paddr_t pa, size_t block_size) |
| { |
| return pa_init((pa_addr(pa) + block_size) & ~(block_size - 1)); |
| } |
| |
| /** |
| * For a given address, calculates the maximum (plus one) address that can be |
| * represented by the same table at the given level. |
| */ |
| static ptable_addr_t mm_level_end(ptable_addr_t addr, uint8_t level) |
| { |
| size_t offset = PAGE_BITS + (level + 1) * PAGE_LEVEL_BITS; |
| |
| return ((addr >> offset) + 1) << offset; |
| } |
| |
| /** |
| * For a given address, calculates the index at which its entry is stored in a |
| * table at the given level. |
| */ |
| static size_t mm_index(ptable_addr_t addr, uint8_t level) |
| { |
| ptable_addr_t v = addr >> (PAGE_BITS + level * PAGE_LEVEL_BITS); |
| |
| return v & ((UINT64_C(1) << PAGE_LEVEL_BITS) - 1); |
| } |
| |
| /** |
| * Allocates a new page table. |
| */ |
| static struct mm_page_table *mm_alloc_page_tables(size_t count, |
| struct mpool *ppool) |
| { |
| if (count == 1) { |
| return mpool_alloc(ppool); |
| } |
| |
| return mpool_alloc_contiguous(ppool, count, count); |
| } |
| |
| /** |
| * Returns the maximum level in the page table given the flags. |
| */ |
| static uint8_t mm_max_level(int flags) |
| { |
| return (flags & MM_FLAG_STAGE1) ? arch_mm_stage1_max_level() |
| : arch_mm_stage2_max_level(); |
| } |
| |
| /** |
| * Returns the number of root-level tables given the flags. |
| */ |
| static uint8_t mm_root_table_count(int flags) |
| { |
| return (flags & MM_FLAG_STAGE1) ? arch_mm_stage1_root_table_count() |
| : arch_mm_stage2_root_table_count(); |
| } |
| |
| /** |
| * Invalidates the TLB for the given address range. |
| */ |
| static void mm_invalidate_tlb(ptable_addr_t begin, ptable_addr_t end, int flags) |
| { |
| if (flags & MM_FLAG_STAGE1) { |
| arch_mm_invalidate_stage1_range(va_init(begin), va_init(end)); |
| } else { |
| arch_mm_invalidate_stage2_range(ipa_init(begin), ipa_init(end)); |
| } |
| } |
| |
| /** |
| * Frees all page-table-related memory associated with the given pte at the |
| * given level, including any subtables recursively. |
| */ |
| static void mm_free_page_pte(pte_t pte, uint8_t level, struct mpool *ppool) |
| { |
| struct mm_page_table *table; |
| uint64_t i; |
| |
| if (!arch_mm_pte_is_table(pte, level)) { |
| return; |
| } |
| |
| /* Recursively free any subtables. */ |
| table = mm_page_table_from_pa(arch_mm_table_from_pte(pte, level)); |
| for (i = 0; i < MM_PTE_PER_PAGE; ++i) { |
| mm_free_page_pte(table->entries[i], level - 1, ppool); |
| } |
| |
| /* Free the table itself. */ |
| mpool_free(ppool, table); |
| } |
| |
| /** |
| * Returns the first address which cannot be encoded in page tables given by |
| * `flags`. It is the exclusive end of the address space created by the tables. |
| */ |
| ptable_addr_t mm_ptable_addr_space_end(int flags) |
| { |
| return mm_root_table_count(flags) * |
| mm_entry_size(mm_max_level(flags) + 1); |
| } |
| |
| /** |
| * Initialises the given page table. |
| */ |
| bool mm_ptable_init(struct mm_ptable *t, int flags, struct mpool *ppool) |
| { |
| uint8_t i; |
| size_t j; |
| struct mm_page_table *tables; |
| uint8_t root_table_count = mm_root_table_count(flags); |
| |
| tables = mm_alloc_page_tables(root_table_count, ppool); |
| if (tables == NULL) { |
| return false; |
| } |
| |
| for (i = 0; i < root_table_count; i++) { |
| for (j = 0; j < MM_PTE_PER_PAGE; j++) { |
| tables[i].entries[j] = |
| arch_mm_absent_pte(mm_max_level(flags)); |
| } |
| } |
| |
| /* |
| * TODO: halloc could return a virtual or physical address if mm not |
| * enabled? |
| */ |
| t->root = pa_init((uintpaddr_t)tables); |
| |
| return true; |
| } |
| |
| /** |
| * Frees all memory associated with the give page table. |
| */ |
| static void mm_ptable_fini(struct mm_ptable *t, int flags, struct mpool *ppool) |
| { |
| struct mm_page_table *tables = mm_page_table_from_pa(t->root); |
| uint8_t level = mm_max_level(flags); |
| uint8_t root_table_count = mm_root_table_count(flags); |
| uint8_t i; |
| uint64_t j; |
| |
| for (i = 0; i < root_table_count; ++i) { |
| for (j = 0; j < MM_PTE_PER_PAGE; ++j) { |
| mm_free_page_pte(tables[i].entries[j], level, ppool); |
| } |
| } |
| |
| mpool_add_chunk(ppool, tables, |
| sizeof(struct mm_page_table) * root_table_count); |
| } |
| |
| /** |
| * Replaces a page table entry with the given value. If both old and new values |
| * are valid, it performs a break-before-make sequence where it first writes an |
| * invalid value to the PTE, flushes the TLB, then writes the actual new value. |
| * This is to prevent cases where CPUs have different 'valid' values in their |
| * TLBs, which may result in issues for example in cache coherency. |
| */ |
| static void mm_replace_entry(ptable_addr_t begin, pte_t *pte, pte_t new_pte, |
| uint8_t level, int flags, struct mpool *ppool) |
| { |
| pte_t v = *pte; |
| |
| /* |
| * We need to do the break-before-make sequence if both values are |
| * present and the TLB is being invalidated. |
| */ |
| if (((flags & MM_FLAG_STAGE1) || mm_stage2_invalidate) && |
| arch_mm_pte_is_valid(v, level) && |
| arch_mm_pte_is_valid(new_pte, level)) { |
| *pte = arch_mm_absent_pte(level); |
| mm_invalidate_tlb(begin, begin + mm_entry_size(level), flags); |
| } |
| |
| /* Assign the new pte. */ |
| *pte = new_pte; |
| |
| /* Free pages that aren't in use anymore. */ |
| mm_free_page_pte(v, level, ppool); |
| } |
| |
| /** |
| * Populates the provided page table entry with a reference to another table if |
| * needed, that is, if it does not yet point to another table. |
| * |
| * Returns a pointer to the table the entry now points to. |
| */ |
| static struct mm_page_table *mm_populate_table_pte(ptable_addr_t begin, |
| pte_t *pte, uint8_t level, |
| int flags, |
| struct mpool *ppool) |
| { |
| struct mm_page_table *ntable; |
| pte_t v = *pte; |
| pte_t new_pte; |
| size_t i; |
| size_t inc; |
| uint8_t level_below = level - 1; |
| |
| /* Just return pointer to table if it's already populated. */ |
| if (arch_mm_pte_is_table(v, level)) { |
| return mm_page_table_from_pa(arch_mm_table_from_pte(v, level)); |
| } |
| |
| /* Allocate a new table. */ |
| ntable = mm_alloc_page_tables(1, ppool); |
| if (ntable == NULL) { |
| dlog("Failed to allocate memory for page table\n"); |
| return NULL; |
| } |
| |
| /* Determine template for new pte and its increment. */ |
| if (arch_mm_pte_is_block(v, level)) { |
| inc = mm_entry_size(level_below); |
| new_pte = arch_mm_block_pte(level_below, |
| arch_mm_block_from_pte(v, level), |
| arch_mm_pte_attrs(v, level)); |
| } else { |
| inc = 0; |
| new_pte = arch_mm_absent_pte(level_below); |
| } |
| |
| /* Initialise entries in the new table. */ |
| for (i = 0; i < MM_PTE_PER_PAGE; i++) { |
| ntable->entries[i] = new_pte; |
| new_pte += inc; |
| } |
| |
| /* Ensure initialisation is visible before updating the pte. */ |
| atomic_thread_fence(memory_order_release); |
| |
| /* Replace the pte entry, doing a break-before-make if needed. */ |
| mm_replace_entry(begin, pte, |
| arch_mm_table_pte(level, pa_init((uintpaddr_t)ntable)), |
| level, flags, ppool); |
| |
| return ntable; |
| } |
| |
| /** |
| * Returns whether all entries in this table are absent. |
| */ |
| static bool mm_page_table_is_empty(struct mm_page_table *table, uint8_t level) |
| { |
| uint64_t i; |
| |
| for (i = 0; i < MM_PTE_PER_PAGE; ++i) { |
| if (arch_mm_pte_is_present(table->entries[i], level)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Updates the page table at the given level to map the given address range to a |
| * physical range using the provided (architecture-specific) attributes. Or if |
| * MM_FLAG_UNMAP is set, unmap the given range instead. |
| * |
| * This function calls itself recursively if it needs to update additional |
| * levels, but the recursion is bound by the maximum number of levels in a page |
| * table. |
| */ |
| static bool mm_map_level(ptable_addr_t begin, ptable_addr_t end, paddr_t pa, |
| uint64_t attrs, struct mm_page_table *table, |
| uint8_t level, int flags, struct mpool *ppool) |
| { |
| pte_t *pte = &table->entries[mm_index(begin, level)]; |
| ptable_addr_t level_end = mm_level_end(begin, level); |
| size_t entry_size = mm_entry_size(level); |
| bool commit = flags & MM_FLAG_COMMIT; |
| bool unmap = flags & MM_FLAG_UNMAP; |
| |
| /* Cap end so that we don't go over the current level max. */ |
| if (end > level_end) { |
| end = level_end; |
| } |
| |
| /* Fill each entry in the table. */ |
| while (begin < end) { |
| if (unmap ? !arch_mm_pte_is_present(*pte, level) |
| : arch_mm_pte_is_block(*pte, level) && |
| arch_mm_pte_attrs(*pte, level) == attrs) { |
| /* |
| * If the entry is already mapped with the right |
| * attributes, or already absent in the case of |
| * unmapping, no need to do anything; carry on to the |
| * next entry. |
| */ |
| } else if ((end - begin) >= entry_size && |
| (unmap || arch_mm_is_block_allowed(level)) && |
| (begin & (entry_size - 1)) == 0) { |
| /* |
| * If the entire entry is within the region we want to |
| * map, map/unmap the whole entry. |
| */ |
| if (commit) { |
| pte_t new_pte = |
| unmap ? arch_mm_absent_pte(level) |
| : arch_mm_block_pte(level, pa, |
| attrs); |
| mm_replace_entry(begin, pte, new_pte, level, |
| flags, ppool); |
| } |
| } else { |
| /* |
| * If the entry is already a subtable get it; otherwise |
| * replace it with an equivalent subtable and get that. |
| */ |
| struct mm_page_table *nt = mm_populate_table_pte( |
| begin, pte, level, flags, ppool); |
| if (nt == NULL) { |
| return false; |
| } |
| |
| /* |
| * Recurse to map/unmap the appropriate entries within |
| * the subtable. |
| */ |
| if (!mm_map_level(begin, end, pa, attrs, nt, level - 1, |
| flags, ppool)) { |
| return false; |
| } |
| |
| /* |
| * If the subtable is now empty, replace it with an |
| * absent entry at this level. We never need to do |
| * break-before-makes here because we are assigning |
| * an absent value. |
| */ |
| if (commit && unmap && |
| mm_page_table_is_empty(nt, level - 1)) { |
| pte_t v = *pte; |
| *pte = arch_mm_absent_pte(level); |
| mm_free_page_pte(v, level, ppool); |
| } |
| } |
| |
| begin = mm_start_of_next_block(begin, entry_size); |
| pa = mm_pa_start_of_next_block(pa, entry_size); |
| pte++; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Updates the page table from the root to map the given address range to a |
| * physical range using the provided (architecture-specific) attributes. Or if |
| * MM_FLAG_UNMAP is set, unmap the given range instead. |
| */ |
| static bool mm_map_root(struct mm_ptable *t, ptable_addr_t begin, |
| ptable_addr_t end, uint64_t attrs, uint8_t root_level, |
| int flags, struct mpool *ppool) |
| { |
| size_t root_table_size = mm_entry_size(root_level); |
| struct mm_page_table *table = |
| &mm_page_table_from_pa(t->root)[mm_index(begin, root_level)]; |
| |
| while (begin < end) { |
| if (!mm_map_level(begin, end, pa_init(begin), attrs, table, |
| root_level - 1, flags, ppool)) { |
| return false; |
| } |
| begin = mm_start_of_next_block(begin, root_table_size); |
| table++; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Updates the given table such that the given physical address range is mapped |
| * or not mapped into the address space with the architecture-agnostic mode |
| * provided. |
| */ |
| static bool mm_ptable_identity_update(struct mm_ptable *t, paddr_t pa_begin, |
| paddr_t pa_end, uint64_t attrs, int flags, |
| struct mpool *ppool) |
| { |
| uint8_t root_level = mm_max_level(flags) + 1; |
| ptable_addr_t ptable_end = mm_ptable_addr_space_end(flags); |
| ptable_addr_t end = mm_round_up_to_page(pa_addr(pa_end)); |
| ptable_addr_t begin = pa_addr(arch_mm_clear_pa(pa_begin)); |
| |
| /* |
| * Assert condition to communicate the API constraint of mm_max_level(), |
| * that isn't encoded in the types, to the static analyzer. |
| */ |
| CHECK(root_level >= 2); |
| |
| /* Cap end to stay within the bounds of the page table. */ |
| if (end > ptable_end) { |
| end = ptable_end; |
| } |
| |
| /* |
| * Do it in two steps to prevent leaving the table in a halfway updated |
| * state. In such a two-step implementation, the table may be left with |
| * extra internal tables, but no different mapping on failure. |
| */ |
| if (!mm_map_root(t, begin, end, attrs, root_level, flags, ppool) || |
| !mm_map_root(t, begin, end, attrs, root_level, |
| flags | MM_FLAG_COMMIT, ppool)) { |
| return false; |
| } |
| |
| /* Invalidate the tlb. */ |
| if ((flags & MM_FLAG_STAGE1) || mm_stage2_invalidate) { |
| mm_invalidate_tlb(begin, end, flags); |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Writes the given table to the debug log, calling itself recursively to |
| * write sub-tables. |
| */ |
| static void mm_dump_table_recursive(struct mm_page_table *table, uint8_t level, |
| int max_level) |
| { |
| uint64_t i; |
| |
| for (i = 0; i < MM_PTE_PER_PAGE; i++) { |
| if (!arch_mm_pte_is_present(table->entries[i], level)) { |
| continue; |
| } |
| |
| dlog("%*s%x: %x\n", 4 * (max_level - level), "", i, |
| table->entries[i]); |
| |
| if (arch_mm_pte_is_table(table->entries[i], level)) { |
| mm_dump_table_recursive( |
| mm_page_table_from_pa(arch_mm_table_from_pte( |
| table->entries[i], level)), |
| level - 1, max_level); |
| } |
| } |
| } |
| |
| /** |
| * Writes the given table to the debug log. |
| */ |
| static void mm_ptable_dump(struct mm_ptable *t, int flags) |
| { |
| struct mm_page_table *tables = mm_page_table_from_pa(t->root); |
| uint8_t max_level = mm_max_level(flags); |
| uint8_t root_table_count = mm_root_table_count(flags); |
| uint8_t i; |
| |
| for (i = 0; i < root_table_count; ++i) { |
| mm_dump_table_recursive(&tables[i], max_level, max_level); |
| } |
| } |
| |
| /** |
| * Given the table PTE entries all have identical attributes, returns the single |
| * entry with which it can be replaced. Note that the table PTE will no longer |
| * be valid after calling this function as the table may have been freed. |
| * |
| * If the table is freed, the memory is freed directly rather than calling |
| * `mm_free_page_pte()` as it is known to not have subtables. |
| */ |
| static pte_t mm_merge_table_pte(pte_t table_pte, uint8_t level, |
| struct mpool *ppool) |
| { |
| struct mm_page_table *table; |
| uint64_t block_attrs; |
| uint64_t table_attrs; |
| uint64_t combined_attrs; |
| paddr_t block_address; |
| |
| table = mm_page_table_from_pa(arch_mm_table_from_pte(table_pte, level)); |
| |
| if (!arch_mm_pte_is_present(table->entries[0], level - 1)) { |
| /* Free the table and return an absent entry. */ |
| mpool_free(ppool, table); |
| return arch_mm_absent_pte(level); |
| } |
| |
| /* Might not be possible to merge the table into a single block. */ |
| if (!arch_mm_is_block_allowed(level)) { |
| return table_pte; |
| } |
| |
| /* Replace table with a single block, with equivalent attributes. */ |
| block_attrs = arch_mm_pte_attrs(table->entries[0], level - 1); |
| table_attrs = arch_mm_pte_attrs(table_pte, level); |
| combined_attrs = |
| arch_mm_combine_table_entry_attrs(table_attrs, block_attrs); |
| block_address = arch_mm_block_from_pte(table->entries[0], level - 1); |
| |
| /* Free the table and return a block. */ |
| mpool_free(ppool, table); |
| return arch_mm_block_pte(level, block_address, combined_attrs); |
| } |
| |
| /** |
| * Defragments the given PTE by recursively replacing any tables with blocks or |
| * absent entries where possible. |
| */ |
| static pte_t mm_ptable_defrag_entry(pte_t entry, uint8_t level, |
| struct mpool *ppool) |
| { |
| struct mm_page_table *table; |
| uint64_t i; |
| bool mergeable; |
| bool base_present; |
| uint64_t base_attrs; |
| |
| if (!arch_mm_pte_is_table(entry, level)) { |
| return entry; |
| } |
| |
| table = mm_page_table_from_pa(arch_mm_table_from_pte(entry, level)); |
| |
| /* Defrag the first entry in the table and use it as the base entry. */ |
| static_assert(MM_PTE_PER_PAGE >= 1, "There must be at least one PTE."); |
| table->entries[0] = |
| mm_ptable_defrag_entry(table->entries[0], level - 1, ppool); |
| base_present = arch_mm_pte_is_present(table->entries[0], level - 1); |
| base_attrs = arch_mm_pte_attrs(table->entries[0], level - 1); |
| |
| /* |
| * Defrag the remaining entries in the table and check whether they are |
| * compatible with the base entry meaning the table can be merged into a |
| * block entry. It assumes addresses are contiguous due to identity |
| * mapping. |
| */ |
| mergeable = true; |
| for (i = 1; i < MM_PTE_PER_PAGE; ++i) { |
| bool present; |
| |
| table->entries[i] = mm_ptable_defrag_entry(table->entries[i], |
| level - 1, ppool); |
| present = arch_mm_pte_is_present(table->entries[i], level - 1); |
| |
| if (present != base_present) { |
| mergeable = false; |
| continue; |
| } |
| |
| if (!present) { |
| continue; |
| } |
| |
| if (!arch_mm_pte_is_block(table->entries[i], level - 1)) { |
| mergeable = false; |
| continue; |
| } |
| |
| if (arch_mm_pte_attrs(table->entries[i], level - 1) != |
| base_attrs) { |
| mergeable = false; |
| continue; |
| } |
| } |
| |
| if (mergeable) { |
| return mm_merge_table_pte(entry, level, ppool); |
| } |
| |
| return entry; |
| } |
| |
| /** |
| * Defragments the given page table by converting page table references to |
| * blocks whenever possible. |
| */ |
| static void mm_ptable_defrag(struct mm_ptable *t, int flags, |
| struct mpool *ppool) |
| { |
| struct mm_page_table *tables = mm_page_table_from_pa(t->root); |
| uint8_t level = mm_max_level(flags); |
| uint8_t root_table_count = mm_root_table_count(flags); |
| uint8_t i; |
| uint64_t j; |
| |
| /* |
| * Loop through each entry in the table. If it points to another table, |
| * check if that table can be replaced by a block or an absent entry. |
| */ |
| for (i = 0; i < root_table_count; ++i) { |
| for (j = 0; j < MM_PTE_PER_PAGE; ++j) { |
| tables[i].entries[j] = mm_ptable_defrag_entry( |
| tables[i].entries[j], level, ppool); |
| } |
| } |
| } |
| |
| /** |
| * Gets the attributes applied to the given range of stage-2 addresses at the |
| * given level. |
| * |
| * The `got_attrs` argument is initially passed as false until `attrs` contains |
| * attributes of the memory region at which point it is passed as true. |
| * |
| * The value returned in `attrs` is only valid if the function returns true. |
| * |
| * Returns true if the whole range has the same attributes and false otherwise. |
| */ |
| static bool mm_ptable_get_attrs_level(struct mm_page_table *table, |
| ptable_addr_t begin, ptable_addr_t end, |
| uint8_t level, bool got_attrs, |
| uint64_t *attrs) |
| { |
| pte_t *pte = &table->entries[mm_index(begin, level)]; |
| ptable_addr_t level_end = mm_level_end(begin, level); |
| size_t entry_size = mm_entry_size(level); |
| |
| /* Cap end so that we don't go over the current level max. */ |
| if (end > level_end) { |
| end = level_end; |
| } |
| |
| /* Check that each entry is owned. */ |
| while (begin < end) { |
| if (arch_mm_pte_is_table(*pte, level)) { |
| if (!mm_ptable_get_attrs_level( |
| mm_page_table_from_pa( |
| arch_mm_table_from_pte(*pte, |
| level)), |
| begin, end, level - 1, got_attrs, attrs)) { |
| return false; |
| } |
| got_attrs = true; |
| } else { |
| if (!got_attrs) { |
| *attrs = arch_mm_pte_attrs(*pte, level); |
| got_attrs = true; |
| } else if (arch_mm_pte_attrs(*pte, level) != *attrs) { |
| return false; |
| } |
| } |
| |
| begin = mm_start_of_next_block(begin, entry_size); |
| pte++; |
| } |
| |
| /* The entry is a valid block. */ |
| return got_attrs; |
| } |
| |
| /** |
| * Gets the attributes applies to the given range of addresses in the stage-2 |
| * table. |
| * |
| * The value returned in `attrs` is only valid if the function returns true. |
| * |
| * Returns true if the whole range has the same attributes and false otherwise. |
| */ |
| static bool mm_vm_get_attrs(struct mm_ptable *t, ptable_addr_t begin, |
| ptable_addr_t end, uint64_t *attrs) |
| { |
| int flags = 0; |
| uint8_t max_level = mm_max_level(flags); |
| uint8_t root_level = max_level + 1; |
| size_t root_table_size = mm_entry_size(root_level); |
| ptable_addr_t ptable_end = |
| mm_root_table_count(flags) * mm_entry_size(root_level); |
| struct mm_page_table *table; |
| bool got_attrs = false; |
| |
| begin = mm_round_down_to_page(begin); |
| end = mm_round_up_to_page(end); |
| |
| /* Fail if the addresses are out of range. */ |
| if (end > ptable_end) { |
| return false; |
| } |
| |
| table = &mm_page_table_from_pa(t->root)[mm_index(begin, root_level)]; |
| while (begin < end) { |
| if (!mm_ptable_get_attrs_level(table, begin, end, max_level, |
| got_attrs, attrs)) { |
| return false; |
| } |
| |
| got_attrs = true; |
| begin = mm_start_of_next_block(begin, root_table_size); |
| table++; |
| } |
| |
| return got_attrs; |
| } |
| |
| bool mm_vm_init(struct mm_ptable *t, struct mpool *ppool) |
| { |
| return mm_ptable_init(t, 0, ppool); |
| } |
| |
| void mm_vm_fini(struct mm_ptable *t, struct mpool *ppool) |
| { |
| mm_ptable_fini(t, 0, ppool); |
| } |
| |
| /** |
| * Updates a VM's page table such that the given physical address range is |
| * mapped in the address space at the corresponding address range in the |
| * architecture-agnostic mode provided. |
| */ |
| bool mm_vm_identity_map(struct mm_ptable *t, paddr_t begin, paddr_t end, |
| uint32_t mode, ipaddr_t *ipa, struct mpool *ppool) |
| { |
| int flags = 0; |
| bool success = mm_ptable_identity_update( |
| t, begin, end, arch_mm_mode_to_stage2_attrs(mode), flags, |
| ppool); |
| |
| if (success && ipa != NULL) { |
| *ipa = ipa_from_pa(begin); |
| } |
| |
| return success; |
| } |
| |
| /** |
| * Updates the VM's table such that the given physical address range has no |
| * connection to the VM. |
| */ |
| bool mm_vm_unmap(struct mm_ptable *t, paddr_t begin, paddr_t end, |
| struct mpool *ppool) |
| { |
| return mm_ptable_identity_update( |
| t, begin, end, |
| arch_mm_mode_to_stage2_attrs(MM_MODE_UNOWNED | MM_MODE_INVALID | |
| MM_MODE_SHARED), |
| MM_FLAG_UNMAP, ppool); |
| } |
| |
| /** |
| * Unmaps the hypervisor pages from the given page table. |
| */ |
| bool mm_vm_unmap_hypervisor(struct mm_ptable *t, struct mpool *ppool) |
| { |
| /* TODO: If we add pages dynamically, they must be included here too. */ |
| return mm_vm_unmap(t, layout_text_begin(), layout_text_end(), ppool) && |
| mm_vm_unmap(t, layout_rodata_begin(), layout_rodata_end(), |
| ppool) && |
| mm_vm_unmap(t, layout_data_begin(), layout_data_end(), ppool); |
| } |
| |
| /** |
| * Write the given page table of a VM to the debug log. |
| */ |
| void mm_vm_dump(struct mm_ptable *t) |
| { |
| mm_ptable_dump(t, 0); |
| } |
| |
| /** |
| * Defragments the VM page table. |
| */ |
| void mm_vm_defrag(struct mm_ptable *t, struct mpool *ppool) |
| { |
| mm_ptable_defrag(t, 0, ppool); |
| } |
| |
| /** |
| * Gets the mode of the give range of intermediate physical addresses if they |
| * are mapped with the same mode. |
| * |
| * Returns true if the range is mapped with the same mode and false otherwise. |
| */ |
| bool mm_vm_get_mode(struct mm_ptable *t, ipaddr_t begin, ipaddr_t end, |
| uint32_t *mode) |
| { |
| uint64_t attrs; |
| bool ret; |
| |
| ret = mm_vm_get_attrs(t, ipa_addr(begin), ipa_addr(end), &attrs); |
| if (ret) { |
| *mode = arch_mm_stage2_attrs_to_mode(attrs); |
| } |
| |
| return ret; |
| } |
| |
| static struct mm_stage1_locked mm_stage1_lock_unsafe(void) |
| { |
| return (struct mm_stage1_locked){.ptable = &ptable}; |
| } |
| |
| struct mm_stage1_locked mm_lock_stage1(void) |
| { |
| sl_lock(&ptable_lock); |
| return mm_stage1_lock_unsafe(); |
| } |
| |
| void mm_unlock_stage1(struct mm_stage1_locked *lock) |
| { |
| CHECK(lock->ptable == &ptable); |
| sl_unlock(&ptable_lock); |
| lock->ptable = NULL; |
| } |
| |
| /** |
| * Updates the hypervisor page table such that the given physical address range |
| * is mapped into the address space at the corresponding address range in the |
| * architecture-agnostic mode provided. |
| */ |
| void *mm_identity_map(struct mm_stage1_locked stage1_locked, paddr_t begin, |
| paddr_t end, uint32_t mode, struct mpool *ppool) |
| { |
| if (mm_ptable_identity_update(stage1_locked.ptable, begin, end, |
| arch_mm_mode_to_stage1_attrs(mode), |
| MM_FLAG_STAGE1, ppool)) { |
| return ptr_from_va(va_from_pa(begin)); |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * Updates the hypervisor table such that the given physical address range is |
| * not mapped in the address space. |
| */ |
| bool mm_unmap(struct mm_stage1_locked stage1_locked, paddr_t begin, paddr_t end, |
| struct mpool *ppool) |
| { |
| return mm_ptable_identity_update( |
| stage1_locked.ptable, begin, end, |
| arch_mm_mode_to_stage1_attrs(MM_MODE_UNOWNED | MM_MODE_INVALID | |
| MM_MODE_SHARED), |
| MM_FLAG_STAGE1 | MM_FLAG_UNMAP, ppool); |
| } |
| |
| /** |
| * Defragments the hypervisor page table. |
| */ |
| void mm_defrag(struct mm_stage1_locked stage1_locked, struct mpool *ppool) |
| { |
| mm_ptable_defrag(stage1_locked.ptable, MM_FLAG_STAGE1, ppool); |
| } |
| |
| /** |
| * Initialises memory management for the hypervisor itself. |
| */ |
| bool mm_init(struct mpool *ppool) |
| { |
| /* Locking is not enabled yet so fake it, */ |
| struct mm_stage1_locked stage1_locked = mm_stage1_lock_unsafe(); |
| |
| dlog("text: %#x - %#x\n", pa_addr(layout_text_begin()), |
| pa_addr(layout_text_end())); |
| dlog("rodata: %#x - %#x\n", pa_addr(layout_rodata_begin()), |
| pa_addr(layout_rodata_end())); |
| dlog("data: %#x - %#x\n", pa_addr(layout_data_begin()), |
| pa_addr(layout_data_end())); |
| |
| if (!mm_ptable_init(&ptable, MM_FLAG_STAGE1, ppool)) { |
| dlog("Unable to allocate memory for page table.\n"); |
| return false; |
| } |
| |
| /* Let console driver map pages for itself. */ |
| plat_console_mm_init(stage1_locked, ppool); |
| |
| /* Map each section. */ |
| mm_identity_map(stage1_locked, layout_text_begin(), layout_text_end(), |
| MM_MODE_X, ppool); |
| |
| mm_identity_map(stage1_locked, layout_rodata_begin(), |
| layout_rodata_end(), MM_MODE_R, ppool); |
| |
| mm_identity_map(stage1_locked, layout_data_begin(), layout_data_end(), |
| MM_MODE_R | MM_MODE_W, ppool); |
| |
| return arch_mm_init(ptable.root); |
| } |