| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "hf/api.h" |
| |
| #include "hf/arch/cpu.h" |
| #include "hf/arch/tee.h" |
| #include "hf/arch/timer.h" |
| |
| #include "hf/check.h" |
| #include "hf/dlog.h" |
| #include "hf/ffa_internal.h" |
| #include "hf/ffa_memory.h" |
| #include "hf/mm.h" |
| #include "hf/plat/console.h" |
| #include "hf/spinlock.h" |
| #include "hf/static_assert.h" |
| #include "hf/std.h" |
| #include "hf/vm.h" |
| |
| #include "vmapi/hf/call.h" |
| #include "vmapi/hf/ffa.h" |
| |
| /* |
| * To eliminate the risk of deadlocks, we define a partial order for the |
| * acquisition of locks held concurrently by the same physical CPU. Our current |
| * ordering requirements are as follows: |
| * |
| * vm::lock -> vcpu::lock -> mm_stage1_lock -> dlog sl |
| * |
| * Locks of the same kind require the lock of lowest address to be locked first, |
| * see `sl_lock_both()`. |
| */ |
| |
| static_assert(HF_MAILBOX_SIZE == PAGE_SIZE, |
| "Currently, a page is mapped for the send and receive buffers so " |
| "the maximum request is the size of a page."); |
| |
| static_assert(MM_PPOOL_ENTRY_SIZE >= HF_MAILBOX_SIZE, |
| "The page pool entry size must be at least as big as the mailbox " |
| "size, so that memory region descriptors can be copied from the " |
| "mailbox for memory sharing."); |
| |
| static struct mpool api_page_pool; |
| |
| /** |
| * Initialises the API page pool by taking ownership of the contents of the |
| * given page pool. |
| */ |
| void api_init(struct mpool *ppool) |
| { |
| mpool_init_from(&api_page_pool, ppool); |
| } |
| |
| /** |
| * Switches the physical CPU back to the corresponding vCPU of the primary VM. |
| * |
| * This triggers the scheduling logic to run. Run in the context of secondary VM |
| * to cause FFA_RUN to return and the primary VM to regain control of the CPU. |
| */ |
| static struct vcpu *api_switch_to_primary(struct vcpu *current, |
| struct ffa_value primary_ret, |
| enum vcpu_state secondary_state) |
| { |
| struct vm *primary = vm_find(HF_PRIMARY_VM_ID); |
| struct vcpu *next = vm_get_vcpu(primary, cpu_index(current->cpu)); |
| |
| /* |
| * If the secondary is blocked but has a timer running, sleep until the |
| * timer fires rather than indefinitely. |
| */ |
| switch (primary_ret.func) { |
| case HF_FFA_RUN_WAIT_FOR_INTERRUPT: |
| case FFA_MSG_WAIT_32: { |
| if (arch_timer_enabled_current()) { |
| uint64_t remaining_ns = |
| arch_timer_remaining_ns_current(); |
| |
| if (remaining_ns == 0) { |
| /* |
| * Timer is pending, so the current vCPU should |
| * be run again right away. |
| */ |
| primary_ret.func = FFA_INTERRUPT_32; |
| /* |
| * primary_ret.arg1 should already be set to the |
| * current VM ID and vCPU ID. |
| */ |
| primary_ret.arg2 = 0; |
| } else { |
| primary_ret.arg2 = remaining_ns; |
| } |
| } else { |
| primary_ret.arg2 = FFA_SLEEP_INDEFINITE; |
| } |
| break; |
| } |
| |
| default: |
| /* Do nothing. */ |
| break; |
| } |
| |
| /* Set the return value for the primary VM's call to HF_VCPU_RUN. */ |
| arch_regs_set_retval(&next->regs, primary_ret); |
| |
| /* Mark the current vCPU as waiting. */ |
| sl_lock(¤t->lock); |
| current->state = secondary_state; |
| sl_unlock(¤t->lock); |
| |
| return next; |
| } |
| |
| /** |
| * Returns to the primary VM and signals that the vCPU still has work to do so. |
| */ |
| struct vcpu *api_preempt(struct vcpu *current) |
| { |
| struct ffa_value ret = { |
| .func = FFA_INTERRUPT_32, |
| .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| }; |
| |
| return api_switch_to_primary(current, ret, VCPU_STATE_READY); |
| } |
| |
| /** |
| * Puts the current vCPU in wait for interrupt mode, and returns to the primary |
| * VM. |
| */ |
| struct vcpu *api_wait_for_interrupt(struct vcpu *current) |
| { |
| struct ffa_value ret = { |
| .func = HF_FFA_RUN_WAIT_FOR_INTERRUPT, |
| .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| }; |
| |
| return api_switch_to_primary(current, ret, |
| VCPU_STATE_BLOCKED_INTERRUPT); |
| } |
| |
| /** |
| * Puts the current vCPU in off mode, and returns to the primary VM. |
| */ |
| struct vcpu *api_vcpu_off(struct vcpu *current) |
| { |
| struct ffa_value ret = { |
| .func = HF_FFA_RUN_WAIT_FOR_INTERRUPT, |
| .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| }; |
| |
| /* |
| * Disable the timer, so the scheduler doesn't get told to call back |
| * based on it. |
| */ |
| arch_timer_disable_current(); |
| |
| return api_switch_to_primary(current, ret, VCPU_STATE_OFF); |
| } |
| |
| /** |
| * Returns to the primary VM to allow this CPU to be used for other tasks as the |
| * vCPU does not have work to do at this moment. The current vCPU is marked as |
| * ready to be scheduled again. |
| */ |
| void api_yield(struct vcpu *current, struct vcpu **next) |
| { |
| struct ffa_value primary_ret = { |
| .func = FFA_YIELD_32, |
| .arg1 = ffa_vm_vcpu(current->vm->id, vcpu_index(current)), |
| }; |
| |
| if (current->vm->id == HF_PRIMARY_VM_ID) { |
| /* NOOP on the primary as it makes the scheduling decisions. */ |
| return; |
| } |
| |
| *next = api_switch_to_primary(current, primary_ret, VCPU_STATE_READY); |
| } |
| |
| /** |
| * Switches to the primary so that it can switch to the target, or kick it if it |
| * is already running on a different physical CPU. |
| */ |
| struct vcpu *api_wake_up(struct vcpu *current, struct vcpu *target_vcpu) |
| { |
| struct ffa_value ret = { |
| .func = HF_FFA_RUN_WAKE_UP, |
| .arg1 = ffa_vm_vcpu(target_vcpu->vm->id, |
| vcpu_index(target_vcpu)), |
| }; |
| return api_switch_to_primary(current, ret, VCPU_STATE_READY); |
| } |
| |
| /** |
| * Aborts the vCPU and triggers its VM to abort fully. |
| */ |
| struct vcpu *api_abort(struct vcpu *current) |
| { |
| struct ffa_value ret = ffa_error(FFA_ABORTED); |
| |
| dlog_notice("Aborting VM %u vCPU %u\n", current->vm->id, |
| vcpu_index(current)); |
| |
| if (current->vm->id == HF_PRIMARY_VM_ID) { |
| /* TODO: what to do when the primary aborts? */ |
| for (;;) { |
| /* Do nothing. */ |
| } |
| } |
| |
| atomic_store_explicit(¤t->vm->aborting, true, |
| memory_order_relaxed); |
| |
| /* TODO: free resources once all vCPUs abort. */ |
| |
| return api_switch_to_primary(current, ret, VCPU_STATE_ABORTED); |
| } |
| |
| /** |
| * Returns the ID of the VM. |
| */ |
| struct ffa_value api_ffa_id_get(const struct vcpu *current) |
| { |
| return (struct ffa_value){.func = FFA_SUCCESS_32, |
| .arg2 = current->vm->id}; |
| } |
| |
| /** |
| * Returns the number of VMs configured to run. |
| */ |
| ffa_vm_count_t api_vm_get_count(void) |
| { |
| return vm_get_count(); |
| } |
| |
| /** |
| * Returns the number of vCPUs configured in the given VM, or 0 if there is no |
| * such VM or the caller is not the primary VM. |
| */ |
| ffa_vcpu_count_t api_vcpu_get_count(ffa_vm_id_t vm_id, |
| const struct vcpu *current) |
| { |
| struct vm *vm; |
| |
| /* Only the primary VM needs to know about vCPUs for scheduling. */ |
| if (current->vm->id != HF_PRIMARY_VM_ID) { |
| return 0; |
| } |
| |
| vm = vm_find(vm_id); |
| if (vm == NULL) { |
| return 0; |
| } |
| |
| return vm->vcpu_count; |
| } |
| |
| /** |
| * This function is called by the architecture-specific context switching |
| * function to indicate that register state for the given vCPU has been saved |
| * and can therefore be used by other pCPUs. |
| */ |
| void api_regs_state_saved(struct vcpu *vcpu) |
| { |
| sl_lock(&vcpu->lock); |
| vcpu->regs_available = true; |
| sl_unlock(&vcpu->lock); |
| } |
| |
| /** |
| * Retrieves the next waiter and removes it from the wait list if the VM's |
| * mailbox is in a writable state. |
| */ |
| static struct wait_entry *api_fetch_waiter(struct vm_locked locked_vm) |
| { |
| struct wait_entry *entry; |
| struct vm *vm = locked_vm.vm; |
| |
| if (vm->mailbox.state != MAILBOX_STATE_EMPTY || |
| vm->mailbox.recv == NULL || list_empty(&vm->mailbox.waiter_list)) { |
| /* The mailbox is not writable or there are no waiters. */ |
| return NULL; |
| } |
| |
| /* Remove waiter from the wait list. */ |
| entry = CONTAINER_OF(vm->mailbox.waiter_list.next, struct wait_entry, |
| wait_links); |
| list_remove(&entry->wait_links); |
| return entry; |
| } |
| |
| /** |
| * Assuming that the arguments have already been checked by the caller, injects |
| * a virtual interrupt of the given ID into the given target vCPU. This doesn't |
| * cause the vCPU to actually be run immediately; it will be taken when the vCPU |
| * is next run, which is up to the scheduler. |
| * |
| * Returns: |
| * - 0 on success if no further action is needed. |
| * - 1 if it was called by the primary VM and the primary VM now needs to wake |
| * up or kick the target vCPU. |
| */ |
| static int64_t internal_interrupt_inject(struct vcpu *target_vcpu, |
| uint32_t intid, struct vcpu *current, |
| struct vcpu **next) |
| { |
| uint32_t intid_index = intid / INTERRUPT_REGISTER_BITS; |
| uint32_t intid_mask = 1U << (intid % INTERRUPT_REGISTER_BITS); |
| int64_t ret = 0; |
| |
| sl_lock(&target_vcpu->lock); |
| |
| /* |
| * We only need to change state and (maybe) trigger a virtual IRQ if it |
| * is enabled and was not previously pending. Otherwise we can skip |
| * everything except setting the pending bit. |
| * |
| * If you change this logic make sure to update the need_vm_lock logic |
| * above to match. |
| */ |
| if (!(target_vcpu->interrupts.interrupt_enabled[intid_index] & |
| ~target_vcpu->interrupts.interrupt_pending[intid_index] & |
| intid_mask)) { |
| goto out; |
| } |
| |
| /* Increment the count. */ |
| target_vcpu->interrupts.enabled_and_pending_count++; |
| |
| /* |
| * Only need to update state if there was not already an |
| * interrupt enabled and pending. |
| */ |
| if (target_vcpu->interrupts.enabled_and_pending_count != 1) { |
| goto out; |
| } |
| |
| if (current->vm->id == HF_PRIMARY_VM_ID) { |
| /* |
| * If the call came from the primary VM, let it know that it |
| * should run or kick the target vCPU. |
| */ |
| ret = 1; |
| } else if (current != target_vcpu && next != NULL) { |
| *next = api_wake_up(current, target_vcpu); |
| } |
| |
| out: |
| /* Either way, make it pending. */ |
| target_vcpu->interrupts.interrupt_pending[intid_index] |= intid_mask; |
| |
| sl_unlock(&target_vcpu->lock); |
| |
| return ret; |
| } |
| |
| /** |
| * Constructs an FFA_MSG_SEND value to return from a successful FFA_MSG_POLL |
| * or FFA_MSG_WAIT call. |
| */ |
| static struct ffa_value ffa_msg_recv_return(const struct vm *receiver) |
| { |
| switch (receiver->mailbox.recv_func) { |
| case FFA_MSG_SEND_32: |
| return (struct ffa_value){ |
| .func = FFA_MSG_SEND_32, |
| .arg1 = (receiver->mailbox.recv_sender << 16) | |
| receiver->id, |
| .arg3 = receiver->mailbox.recv_size}; |
| default: |
| /* This should never be reached, but return an error in case. */ |
| dlog_error("Tried to return an invalid message function %#x\n", |
| receiver->mailbox.recv_func); |
| return ffa_error(FFA_DENIED); |
| } |
| } |
| |
| /** |
| * Prepares the vCPU to run by updating its state and fetching whether a return |
| * value needs to be forced onto the vCPU. |
| */ |
| static bool api_vcpu_prepare_run(const struct vcpu *current, struct vcpu *vcpu, |
| struct ffa_value *run_ret) |
| { |
| bool need_vm_lock; |
| bool ret; |
| |
| /* |
| * Check that the registers are available so that the vCPU can be run. |
| * |
| * The VM lock is not needed in the common case so it must only be taken |
| * when it is going to be needed. This ensures there are no inter-vCPU |
| * dependencies in the common run case meaning the sensitive context |
| * switch performance is consistent. |
| */ |
| sl_lock(&vcpu->lock); |
| |
| /* The VM needs to be locked to deliver mailbox messages. */ |
| need_vm_lock = vcpu->state == VCPU_STATE_BLOCKED_MAILBOX; |
| if (need_vm_lock) { |
| sl_unlock(&vcpu->lock); |
| sl_lock(&vcpu->vm->lock); |
| sl_lock(&vcpu->lock); |
| } |
| |
| /* |
| * If the vCPU is already running somewhere then we can't run it here |
| * simultaneously. While it is actually running then the state should be |
| * `VCPU_STATE_RUNNING` and `regs_available` should be false. Once it |
| * stops running but while Hafnium is in the process of switching back |
| * to the primary there will be a brief period while the state has been |
| * updated but `regs_available` is still false (until |
| * `api_regs_state_saved` is called). We can't start running it again |
| * until this has finished, so count this state as still running for the |
| * purposes of this check. |
| */ |
| if (vcpu->state == VCPU_STATE_RUNNING || !vcpu->regs_available) { |
| /* |
| * vCPU is running on another pCPU. |
| * |
| * It's okay not to return the sleep duration here because the |
| * other physical CPU that is currently running this vCPU will |
| * return the sleep duration if needed. |
| */ |
| *run_ret = ffa_error(FFA_BUSY); |
| ret = false; |
| goto out; |
| } |
| |
| if (atomic_load_explicit(&vcpu->vm->aborting, memory_order_relaxed)) { |
| if (vcpu->state != VCPU_STATE_ABORTED) { |
| dlog_notice("Aborting VM %u vCPU %u\n", vcpu->vm->id, |
| vcpu_index(vcpu)); |
| vcpu->state = VCPU_STATE_ABORTED; |
| } |
| ret = false; |
| goto out; |
| } |
| |
| switch (vcpu->state) { |
| case VCPU_STATE_RUNNING: |
| case VCPU_STATE_OFF: |
| case VCPU_STATE_ABORTED: |
| ret = false; |
| goto out; |
| |
| case VCPU_STATE_BLOCKED_MAILBOX: |
| /* |
| * A pending message allows the vCPU to run so the message can |
| * be delivered directly. |
| */ |
| if (vcpu->vm->mailbox.state == MAILBOX_STATE_RECEIVED) { |
| arch_regs_set_retval(&vcpu->regs, |
| ffa_msg_recv_return(vcpu->vm)); |
| vcpu->vm->mailbox.state = MAILBOX_STATE_READ; |
| break; |
| } |
| /* Fall through. */ |
| case VCPU_STATE_BLOCKED_INTERRUPT: |
| /* Allow virtual interrupts to be delivered. */ |
| if (vcpu->interrupts.enabled_and_pending_count > 0) { |
| break; |
| } |
| |
| if (arch_timer_enabled(&vcpu->regs)) { |
| uint64_t timer_remaining_ns = |
| arch_timer_remaining_ns(&vcpu->regs); |
| |
| /* |
| * The timer expired so allow the interrupt to be |
| * delivered. |
| */ |
| if (timer_remaining_ns == 0) { |
| break; |
| } |
| |
| /* |
| * The vCPU is not ready to run, return the appropriate |
| * code to the primary which called vcpu_run. |
| */ |
| run_ret->func = |
| vcpu->state == VCPU_STATE_BLOCKED_MAILBOX |
| ? FFA_MSG_WAIT_32 |
| : HF_FFA_RUN_WAIT_FOR_INTERRUPT; |
| run_ret->arg1 = |
| ffa_vm_vcpu(vcpu->vm->id, vcpu_index(vcpu)); |
| run_ret->arg2 = timer_remaining_ns; |
| } |
| |
| ret = false; |
| goto out; |
| |
| case VCPU_STATE_READY: |
| break; |
| } |
| |
| /* It has been decided that the vCPU should be run. */ |
| vcpu->cpu = current->cpu; |
| vcpu->state = VCPU_STATE_RUNNING; |
| |
| /* |
| * Mark the registers as unavailable now that we're about to reflect |
| * them onto the real registers. This will also prevent another physical |
| * CPU from trying to read these registers. |
| */ |
| vcpu->regs_available = false; |
| |
| ret = true; |
| |
| out: |
| sl_unlock(&vcpu->lock); |
| if (need_vm_lock) { |
| sl_unlock(&vcpu->vm->lock); |
| } |
| |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_run(ffa_vm_id_t vm_id, ffa_vcpu_index_t vcpu_idx, |
| const struct vcpu *current, struct vcpu **next) |
| { |
| struct vm *vm; |
| struct vcpu *vcpu; |
| struct ffa_value ret = ffa_error(FFA_INVALID_PARAMETERS); |
| |
| /* Only the primary VM can switch vCPUs. */ |
| if (current->vm->id != HF_PRIMARY_VM_ID) { |
| ret.arg2 = FFA_DENIED; |
| goto out; |
| } |
| |
| /* Only secondary VM vCPUs can be run. */ |
| if (vm_id == HF_PRIMARY_VM_ID) { |
| goto out; |
| } |
| |
| /* The requested VM must exist. */ |
| vm = vm_find(vm_id); |
| if (vm == NULL) { |
| goto out; |
| } |
| |
| /* The requested vCPU must exist. */ |
| if (vcpu_idx >= vm->vcpu_count) { |
| goto out; |
| } |
| |
| /* Update state if allowed. */ |
| vcpu = vm_get_vcpu(vm, vcpu_idx); |
| if (!api_vcpu_prepare_run(current, vcpu, &ret)) { |
| goto out; |
| } |
| |
| /* |
| * Inject timer interrupt if timer has expired. It's safe to access |
| * vcpu->regs here because api_vcpu_prepare_run already made sure that |
| * regs_available was true (and then set it to false) before returning |
| * true. |
| */ |
| if (arch_timer_pending(&vcpu->regs)) { |
| /* Make virtual timer interrupt pending. */ |
| internal_interrupt_inject(vcpu, HF_VIRTUAL_TIMER_INTID, vcpu, |
| NULL); |
| |
| /* |
| * Set the mask bit so the hardware interrupt doesn't fire |
| * again. Ideally we wouldn't do this because it affects what |
| * the secondary vCPU sees, but if we don't then we end up with |
| * a loop of the interrupt firing each time we try to return to |
| * the secondary vCPU. |
| */ |
| arch_timer_mask(&vcpu->regs); |
| } |
| |
| /* Switch to the vCPU. */ |
| *next = vcpu; |
| |
| /* |
| * Set a placeholder return code to the scheduler. This will be |
| * overwritten when the switch back to the primary occurs. |
| */ |
| ret.func = FFA_INTERRUPT_32; |
| ret.arg1 = ffa_vm_vcpu(vm_id, vcpu_idx); |
| ret.arg2 = 0; |
| |
| out: |
| return ret; |
| } |
| |
| /** |
| * Check that the mode indicates memory that is valid, owned and exclusive. |
| */ |
| static bool api_mode_valid_owned_and_exclusive(uint32_t mode) |
| { |
| return (mode & (MM_MODE_D | MM_MODE_INVALID | MM_MODE_UNOWNED | |
| MM_MODE_SHARED)) == 0; |
| } |
| |
| /** |
| * Determines the value to be returned by api_vm_configure and ffa_rx_release |
| * after they've succeeded. If a secondary VM is running and there are waiters, |
| * it also switches back to the primary VM for it to wake waiters up. |
| */ |
| static struct ffa_value api_waiter_result(struct vm_locked locked_vm, |
| struct vcpu *current, |
| struct vcpu **next) |
| { |
| struct vm *vm = locked_vm.vm; |
| |
| if (list_empty(&vm->mailbox.waiter_list)) { |
| /* No waiters, nothing else to do. */ |
| return (struct ffa_value){.func = FFA_SUCCESS_32}; |
| } |
| |
| if (vm->id == HF_PRIMARY_VM_ID) { |
| /* The caller is the primary VM. Tell it to wake up waiters. */ |
| return (struct ffa_value){.func = FFA_RX_RELEASE_32}; |
| } |
| |
| /* |
| * Switch back to the primary VM, informing it that there are waiters |
| * that need to be notified. |
| */ |
| *next = api_switch_to_primary( |
| current, (struct ffa_value){.func = FFA_RX_RELEASE_32}, |
| VCPU_STATE_READY); |
| |
| return (struct ffa_value){.func = FFA_SUCCESS_32}; |
| } |
| |
| /** |
| * Configures the hypervisor's stage-1 view of the send and receive pages. The |
| * stage-1 page tables must be locked so memory cannot be taken by another core |
| * which could result in this transaction being unable to roll back in the case |
| * of an error. |
| */ |
| static bool api_vm_configure_stage1(struct vm_locked vm_locked, |
| paddr_t pa_send_begin, paddr_t pa_send_end, |
| paddr_t pa_recv_begin, paddr_t pa_recv_end, |
| struct mpool *local_page_pool) |
| { |
| bool ret; |
| struct mm_stage1_locked mm_stage1_locked = mm_lock_stage1(); |
| |
| /* Map the send page as read-only in the hypervisor address space. */ |
| vm_locked.vm->mailbox.send = |
| mm_identity_map(mm_stage1_locked, pa_send_begin, pa_send_end, |
| MM_MODE_R, local_page_pool); |
| if (!vm_locked.vm->mailbox.send) { |
| /* TODO: partial defrag of failed range. */ |
| /* Recover any memory consumed in failed mapping. */ |
| mm_defrag(mm_stage1_locked, local_page_pool); |
| goto fail; |
| } |
| |
| /* |
| * Map the receive page as writable in the hypervisor address space. On |
| * failure, unmap the send page before returning. |
| */ |
| vm_locked.vm->mailbox.recv = |
| mm_identity_map(mm_stage1_locked, pa_recv_begin, pa_recv_end, |
| MM_MODE_W, local_page_pool); |
| if (!vm_locked.vm->mailbox.recv) { |
| /* TODO: partial defrag of failed range. */ |
| /* Recover any memory consumed in failed mapping. */ |
| mm_defrag(mm_stage1_locked, local_page_pool); |
| goto fail_undo_send; |
| } |
| |
| ret = true; |
| goto out; |
| |
| /* |
| * The following mappings will not require more memory than is available |
| * in the local pool. |
| */ |
| fail_undo_send: |
| vm_locked.vm->mailbox.send = NULL; |
| CHECK(mm_unmap(mm_stage1_locked, pa_send_begin, pa_send_end, |
| local_page_pool)); |
| |
| fail: |
| ret = false; |
| |
| out: |
| mm_unlock_stage1(&mm_stage1_locked); |
| |
| return ret; |
| } |
| |
| /** |
| * Configures the send and receive pages in the VM stage-2 and hypervisor |
| * stage-1 page tables. Locking of the page tables combined with a local memory |
| * pool ensures there will always be enough memory to recover from any errors |
| * that arise. |
| */ |
| static bool api_vm_configure_pages(struct vm_locked vm_locked, |
| paddr_t pa_send_begin, paddr_t pa_send_end, |
| uint32_t orig_send_mode, |
| paddr_t pa_recv_begin, paddr_t pa_recv_end, |
| uint32_t orig_recv_mode) |
| { |
| bool ret; |
| struct mpool local_page_pool; |
| |
| /* |
| * Create a local pool so any freed memory can't be used by another |
| * thread. This is to ensure the original mapping can be restored if any |
| * stage of the process fails. |
| */ |
| mpool_init_with_fallback(&local_page_pool, &api_page_pool); |
| |
| /* Take memory ownership away from the VM and mark as shared. */ |
| if (!vm_identity_map( |
| vm_locked, pa_send_begin, pa_send_end, |
| MM_MODE_UNOWNED | MM_MODE_SHARED | MM_MODE_R | MM_MODE_W, |
| &local_page_pool, NULL)) { |
| goto fail; |
| } |
| |
| if (!vm_identity_map(vm_locked, pa_recv_begin, pa_recv_end, |
| MM_MODE_UNOWNED | MM_MODE_SHARED | MM_MODE_R, |
| &local_page_pool, NULL)) { |
| /* TODO: partial defrag of failed range. */ |
| /* Recover any memory consumed in failed mapping. */ |
| mm_vm_defrag(&vm_locked.vm->ptable, &local_page_pool); |
| goto fail_undo_send; |
| } |
| |
| if (!api_vm_configure_stage1(vm_locked, pa_send_begin, pa_send_end, |
| pa_recv_begin, pa_recv_end, |
| &local_page_pool)) { |
| goto fail_undo_send_and_recv; |
| } |
| |
| ret = true; |
| goto out; |
| |
| /* |
| * The following mappings will not require more memory than is available |
| * in the local pool. |
| */ |
| fail_undo_send_and_recv: |
| CHECK(vm_identity_map(vm_locked, pa_recv_begin, pa_recv_end, |
| orig_recv_mode, &local_page_pool, NULL)); |
| |
| fail_undo_send: |
| CHECK(vm_identity_map(vm_locked, pa_send_begin, pa_send_end, |
| orig_send_mode, &local_page_pool, NULL)); |
| |
| fail: |
| ret = false; |
| |
| out: |
| mpool_fini(&local_page_pool); |
| |
| return ret; |
| } |
| |
| /** |
| * Configures the VM to send/receive data through the specified pages. The pages |
| * must not be shared. |
| * |
| * Returns: |
| * - FFA_ERROR FFA_INVALID_PARAMETERS if the given addresses are not properly |
| * aligned or are the same. |
| * - FFA_ERROR FFA_NO_MEMORY if the hypervisor was unable to map the buffers |
| * due to insuffient page table memory. |
| * - FFA_ERROR FFA_DENIED if the pages are already mapped or are not owned by |
| * the caller. |
| * - FFA_SUCCESS on success if no further action is needed. |
| * - FFA_RX_RELEASE if it was called by the primary VM and the primary VM now |
| * needs to wake up or kick waiters. |
| */ |
| struct ffa_value api_ffa_rxtx_map(ipaddr_t send, ipaddr_t recv, |
| uint32_t page_count, struct vcpu *current, |
| struct vcpu **next) |
| { |
| struct vm *vm = current->vm; |
| struct vm_locked vm_locked; |
| paddr_t pa_send_begin; |
| paddr_t pa_send_end; |
| paddr_t pa_recv_begin; |
| paddr_t pa_recv_end; |
| uint32_t orig_send_mode; |
| uint32_t orig_recv_mode; |
| struct ffa_value ret; |
| |
| /* Hafnium only supports a fixed size of RX/TX buffers. */ |
| if (page_count != HF_MAILBOX_SIZE / FFA_PAGE_SIZE) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* Fail if addresses are not page-aligned. */ |
| if (!is_aligned(ipa_addr(send), PAGE_SIZE) || |
| !is_aligned(ipa_addr(recv), PAGE_SIZE)) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* Convert to physical addresses. */ |
| pa_send_begin = pa_from_ipa(send); |
| pa_send_end = pa_add(pa_send_begin, HF_MAILBOX_SIZE); |
| |
| pa_recv_begin = pa_from_ipa(recv); |
| pa_recv_end = pa_add(pa_recv_begin, HF_MAILBOX_SIZE); |
| |
| /* Fail if the same page is used for the send and receive pages. */ |
| if (pa_addr(pa_send_begin) == pa_addr(pa_recv_begin)) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * The hypervisor's memory map must be locked for the duration of this |
| * operation to ensure there will be sufficient memory to recover from |
| * any failures. |
| * |
| * TODO: the scope of the can be reduced but will require restructuring |
| * to keep a single unlock point. |
| */ |
| vm_locked = vm_lock(vm); |
| |
| /* We only allow these to be setup once. */ |
| if (vm->mailbox.send || vm->mailbox.recv) { |
| ret = ffa_error(FFA_DENIED); |
| goto exit; |
| } |
| |
| /* |
| * Ensure the pages are valid, owned and exclusive to the VM and that |
| * the VM has the required access to the memory. |
| */ |
| if (!mm_vm_get_mode(&vm->ptable, send, ipa_add(send, PAGE_SIZE), |
| &orig_send_mode) || |
| !api_mode_valid_owned_and_exclusive(orig_send_mode) || |
| (orig_send_mode & MM_MODE_R) == 0 || |
| (orig_send_mode & MM_MODE_W) == 0) { |
| ret = ffa_error(FFA_DENIED); |
| goto exit; |
| } |
| |
| if (!mm_vm_get_mode(&vm->ptable, recv, ipa_add(recv, PAGE_SIZE), |
| &orig_recv_mode) || |
| !api_mode_valid_owned_and_exclusive(orig_recv_mode) || |
| (orig_recv_mode & MM_MODE_R) == 0) { |
| ret = ffa_error(FFA_DENIED); |
| goto exit; |
| } |
| |
| if (!api_vm_configure_pages(vm_locked, pa_send_begin, pa_send_end, |
| orig_send_mode, pa_recv_begin, pa_recv_end, |
| orig_recv_mode)) { |
| ret = ffa_error(FFA_NO_MEMORY); |
| goto exit; |
| } |
| |
| /* Tell caller about waiters, if any. */ |
| ret = api_waiter_result(vm_locked, current, next); |
| |
| exit: |
| vm_unlock(&vm_locked); |
| |
| return ret; |
| } |
| |
| /** |
| * Checks whether the given `to` VM's mailbox is currently busy, and optionally |
| * registers the `from` VM to be notified when it becomes available. |
| */ |
| static bool msg_receiver_busy(struct vm_locked to, struct vm *from, bool notify) |
| { |
| if (to.vm->mailbox.state != MAILBOX_STATE_EMPTY || |
| to.vm->mailbox.recv == NULL) { |
| /* |
| * Fail if the receiver isn't currently ready to receive data, |
| * setting up for notification if requested. |
| */ |
| if (notify) { |
| struct wait_entry *entry = |
| vm_get_wait_entry(from, to.vm->id); |
| |
| /* Append waiter only if it's not there yet. */ |
| if (list_empty(&entry->wait_links)) { |
| list_append(&to.vm->mailbox.waiter_list, |
| &entry->wait_links); |
| } |
| } |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Notifies the `to` VM about the message currently in its mailbox, possibly |
| * with the help of the primary VM. |
| */ |
| static struct ffa_value deliver_msg(struct vm_locked to, ffa_vm_id_t from_id, |
| struct vcpu *current, struct vcpu **next) |
| { |
| struct ffa_value ret = (struct ffa_value){.func = FFA_SUCCESS_32}; |
| struct ffa_value primary_ret = { |
| .func = FFA_MSG_SEND_32, |
| .arg1 = ((uint32_t)from_id << 16) | to.vm->id, |
| }; |
| |
| /* Messages for the primary VM are delivered directly. */ |
| if (to.vm->id == HF_PRIMARY_VM_ID) { |
| /* |
| * Only tell the primary VM the size and other details if the |
| * message is for it, to avoid leaking data about messages for |
| * other VMs. |
| */ |
| primary_ret = ffa_msg_recv_return(to.vm); |
| |
| to.vm->mailbox.state = MAILBOX_STATE_READ; |
| *next = api_switch_to_primary(current, primary_ret, |
| VCPU_STATE_READY); |
| return ret; |
| } |
| |
| to.vm->mailbox.state = MAILBOX_STATE_RECEIVED; |
| |
| /* Messages for the TEE are sent on via the dispatcher. */ |
| if (to.vm->id == HF_TEE_VM_ID) { |
| struct ffa_value call = ffa_msg_recv_return(to.vm); |
| |
| ret = arch_tee_call(call); |
| /* |
| * After the call to the TEE completes it must have finished |
| * reading its RX buffer, so it is ready for another message. |
| */ |
| to.vm->mailbox.state = MAILBOX_STATE_EMPTY; |
| /* |
| * Don't return to the primary VM in this case, as the TEE is |
| * not (yet) scheduled via FF-A. |
| */ |
| return ret; |
| } |
| |
| /* Return to the primary VM directly or with a switch. */ |
| if (from_id != HF_PRIMARY_VM_ID) { |
| *next = api_switch_to_primary(current, primary_ret, |
| VCPU_STATE_READY); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Copies data from the sender's send buffer to the recipient's receive buffer |
| * and notifies the recipient. |
| * |
| * If the recipient's receive buffer is busy, it can optionally register the |
| * caller to be notified when the recipient's receive buffer becomes available. |
| */ |
| struct ffa_value api_ffa_msg_send(ffa_vm_id_t sender_vm_id, |
| ffa_vm_id_t receiver_vm_id, uint32_t size, |
| uint32_t attributes, struct vcpu *current, |
| struct vcpu **next) |
| { |
| struct vm *from = current->vm; |
| struct vm *to; |
| struct vm_locked to_locked; |
| const void *from_msg; |
| struct ffa_value ret; |
| bool notify = |
| (attributes & FFA_MSG_SEND_NOTIFY_MASK) == FFA_MSG_SEND_NOTIFY; |
| |
| /* Ensure sender VM ID corresponds to the current VM. */ |
| if (sender_vm_id != from->id) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* Disallow reflexive requests as this suggests an error in the VM. */ |
| if (receiver_vm_id == from->id) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* Limit the size of transfer. */ |
| if (size > FFA_MSG_PAYLOAD_MAX) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* Ensure the receiver VM exists. */ |
| to = vm_find(receiver_vm_id); |
| if (to == NULL) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * Check that the sender has configured its send buffer. If the tx |
| * mailbox at from_msg is configured (i.e. from_msg != NULL) then it can |
| * be safely accessed after releasing the lock since the tx mailbox |
| * address can only be configured once. |
| */ |
| sl_lock(&from->lock); |
| from_msg = from->mailbox.send; |
| sl_unlock(&from->lock); |
| |
| if (from_msg == NULL) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| to_locked = vm_lock(to); |
| |
| if (msg_receiver_busy(to_locked, from, notify)) { |
| ret = ffa_error(FFA_BUSY); |
| goto out; |
| } |
| |
| /* Copy data. */ |
| memcpy_s(to->mailbox.recv, FFA_MSG_PAYLOAD_MAX, from_msg, size); |
| to->mailbox.recv_size = size; |
| to->mailbox.recv_sender = sender_vm_id; |
| to->mailbox.recv_func = FFA_MSG_SEND_32; |
| ret = deliver_msg(to_locked, sender_vm_id, current, next); |
| |
| out: |
| vm_unlock(&to_locked); |
| |
| return ret; |
| } |
| |
| /** |
| * Checks whether the vCPU's attempt to block for a message has already been |
| * interrupted or whether it is allowed to block. |
| */ |
| bool api_ffa_msg_recv_block_interrupted(struct vcpu *current) |
| { |
| bool interrupted; |
| |
| sl_lock(¤t->lock); |
| |
| /* |
| * Don't block if there are enabled and pending interrupts, to match |
| * behaviour of wait_for_interrupt. |
| */ |
| interrupted = (current->interrupts.enabled_and_pending_count > 0); |
| |
| sl_unlock(¤t->lock); |
| |
| return interrupted; |
| } |
| |
| /** |
| * Receives a message from the mailbox. If one isn't available, this function |
| * can optionally block the caller until one becomes available. |
| * |
| * No new messages can be received until the mailbox has been cleared. |
| */ |
| struct ffa_value api_ffa_msg_recv(bool block, struct vcpu *current, |
| struct vcpu **next) |
| { |
| struct vm *vm = current->vm; |
| struct ffa_value return_code; |
| |
| /* |
| * The primary VM will receive messages as a status code from running |
| * vCPUs and must not call this function. |
| */ |
| if (vm->id == HF_PRIMARY_VM_ID) { |
| return ffa_error(FFA_NOT_SUPPORTED); |
| } |
| |
| sl_lock(&vm->lock); |
| |
| /* Return pending messages without blocking. */ |
| if (vm->mailbox.state == MAILBOX_STATE_RECEIVED) { |
| vm->mailbox.state = MAILBOX_STATE_READ; |
| return_code = ffa_msg_recv_return(vm); |
| goto out; |
| } |
| |
| /* No pending message so fail if not allowed to block. */ |
| if (!block) { |
| return_code = ffa_error(FFA_RETRY); |
| goto out; |
| } |
| |
| /* |
| * From this point onward this call can only be interrupted or a message |
| * received. If a message is received the return value will be set at |
| * that time to FFA_SUCCESS. |
| */ |
| return_code = ffa_error(FFA_INTERRUPTED); |
| if (api_ffa_msg_recv_block_interrupted(current)) { |
| goto out; |
| } |
| |
| /* Switch back to primary VM to block. */ |
| { |
| struct ffa_value run_return = { |
| .func = FFA_MSG_WAIT_32, |
| .arg1 = ffa_vm_vcpu(vm->id, vcpu_index(current)), |
| }; |
| |
| *next = api_switch_to_primary(current, run_return, |
| VCPU_STATE_BLOCKED_MAILBOX); |
| } |
| out: |
| sl_unlock(&vm->lock); |
| |
| return return_code; |
| } |
| |
| /** |
| * Retrieves the next VM whose mailbox became writable. For a VM to be notified |
| * by this function, the caller must have called api_mailbox_send before with |
| * the notify argument set to true, and this call must have failed because the |
| * mailbox was not available. |
| * |
| * It should be called repeatedly to retrieve a list of VMs. |
| * |
| * Returns -1 if no VM became writable, or the id of the VM whose mailbox |
| * became writable. |
| */ |
| int64_t api_mailbox_writable_get(const struct vcpu *current) |
| { |
| struct vm *vm = current->vm; |
| struct wait_entry *entry; |
| int64_t ret; |
| |
| sl_lock(&vm->lock); |
| if (list_empty(&vm->mailbox.ready_list)) { |
| ret = -1; |
| goto exit; |
| } |
| |
| entry = CONTAINER_OF(vm->mailbox.ready_list.next, struct wait_entry, |
| ready_links); |
| list_remove(&entry->ready_links); |
| ret = vm_id_for_wait_entry(vm, entry); |
| |
| exit: |
| sl_unlock(&vm->lock); |
| return ret; |
| } |
| |
| /** |
| * Retrieves the next VM waiting to be notified that the mailbox of the |
| * specified VM became writable. Only primary VMs are allowed to call this. |
| * |
| * Returns -1 on failure or if there are no waiters; the VM id of the next |
| * waiter otherwise. |
| */ |
| int64_t api_mailbox_waiter_get(ffa_vm_id_t vm_id, const struct vcpu *current) |
| { |
| struct vm *vm; |
| struct vm_locked locked; |
| struct wait_entry *entry; |
| struct vm *waiting_vm; |
| |
| /* Only primary VMs are allowed to call this function. */ |
| if (current->vm->id != HF_PRIMARY_VM_ID) { |
| return -1; |
| } |
| |
| vm = vm_find(vm_id); |
| if (vm == NULL) { |
| return -1; |
| } |
| |
| /* Check if there are outstanding notifications from given VM. */ |
| locked = vm_lock(vm); |
| entry = api_fetch_waiter(locked); |
| vm_unlock(&locked); |
| |
| if (entry == NULL) { |
| return -1; |
| } |
| |
| /* Enqueue notification to waiting VM. */ |
| waiting_vm = entry->waiting_vm; |
| |
| sl_lock(&waiting_vm->lock); |
| if (list_empty(&entry->ready_links)) { |
| list_append(&waiting_vm->mailbox.ready_list, |
| &entry->ready_links); |
| } |
| sl_unlock(&waiting_vm->lock); |
| |
| return waiting_vm->id; |
| } |
| |
| /** |
| * Releases the caller's mailbox so that a new message can be received. The |
| * caller must have copied out all data they wish to preserve as new messages |
| * will overwrite the old and will arrive asynchronously. |
| * |
| * Returns: |
| * - FFA_ERROR FFA_DENIED on failure, if the mailbox hasn't been read. |
| * - FFA_SUCCESS on success if no further action is needed. |
| * - FFA_RX_RELEASE if it was called by the primary VM and the primary VM now |
| * needs to wake up or kick waiters. Waiters should be retrieved by calling |
| * hf_mailbox_waiter_get. |
| */ |
| struct ffa_value api_ffa_rx_release(struct vcpu *current, struct vcpu **next) |
| { |
| struct vm *vm = current->vm; |
| struct vm_locked locked; |
| struct ffa_value ret; |
| |
| locked = vm_lock(vm); |
| switch (vm->mailbox.state) { |
| case MAILBOX_STATE_EMPTY: |
| case MAILBOX_STATE_RECEIVED: |
| ret = ffa_error(FFA_DENIED); |
| break; |
| |
| case MAILBOX_STATE_READ: |
| ret = api_waiter_result(locked, current, next); |
| vm->mailbox.state = MAILBOX_STATE_EMPTY; |
| break; |
| } |
| vm_unlock(&locked); |
| |
| return ret; |
| } |
| |
| /** |
| * Enables or disables a given interrupt ID for the calling vCPU. |
| * |
| * Returns 0 on success, or -1 if the intid is invalid. |
| */ |
| int64_t api_interrupt_enable(uint32_t intid, bool enable, struct vcpu *current) |
| { |
| uint32_t intid_index = intid / INTERRUPT_REGISTER_BITS; |
| uint32_t intid_mask = 1U << (intid % INTERRUPT_REGISTER_BITS); |
| |
| if (intid >= HF_NUM_INTIDS) { |
| return -1; |
| } |
| |
| sl_lock(¤t->lock); |
| if (enable) { |
| /* |
| * If it is pending and was not enabled before, increment the |
| * count. |
| */ |
| if (current->interrupts.interrupt_pending[intid_index] & |
| ~current->interrupts.interrupt_enabled[intid_index] & |
| intid_mask) { |
| current->interrupts.enabled_and_pending_count++; |
| } |
| current->interrupts.interrupt_enabled[intid_index] |= |
| intid_mask; |
| } else { |
| /* |
| * If it is pending and was enabled before, decrement the count. |
| */ |
| if (current->interrupts.interrupt_pending[intid_index] & |
| current->interrupts.interrupt_enabled[intid_index] & |
| intid_mask) { |
| current->interrupts.enabled_and_pending_count--; |
| } |
| current->interrupts.interrupt_enabled[intid_index] &= |
| ~intid_mask; |
| } |
| |
| sl_unlock(¤t->lock); |
| return 0; |
| } |
| |
| /** |
| * Returns the ID of the next pending interrupt for the calling vCPU, and |
| * acknowledges it (i.e. marks it as no longer pending). Returns |
| * HF_INVALID_INTID if there are no pending interrupts. |
| */ |
| uint32_t api_interrupt_get(struct vcpu *current) |
| { |
| uint8_t i; |
| uint32_t first_interrupt = HF_INVALID_INTID; |
| |
| /* |
| * Find the first enabled and pending interrupt ID, return it, and |
| * deactivate it. |
| */ |
| sl_lock(¤t->lock); |
| for (i = 0; i < HF_NUM_INTIDS / INTERRUPT_REGISTER_BITS; ++i) { |
| uint32_t enabled_and_pending = |
| current->interrupts.interrupt_enabled[i] & |
| current->interrupts.interrupt_pending[i]; |
| |
| if (enabled_and_pending != 0) { |
| uint8_t bit_index = ctz(enabled_and_pending); |
| /* |
| * Mark it as no longer pending and decrement the count. |
| */ |
| current->interrupts.interrupt_pending[i] &= |
| ~(1U << bit_index); |
| current->interrupts.enabled_and_pending_count--; |
| first_interrupt = |
| i * INTERRUPT_REGISTER_BITS + bit_index; |
| break; |
| } |
| } |
| |
| sl_unlock(¤t->lock); |
| return first_interrupt; |
| } |
| |
| /** |
| * Returns whether the current vCPU is allowed to inject an interrupt into the |
| * given VM and vCPU. |
| */ |
| static inline bool is_injection_allowed(uint32_t target_vm_id, |
| struct vcpu *current) |
| { |
| uint32_t current_vm_id = current->vm->id; |
| |
| /* |
| * The primary VM is allowed to inject interrupts into any VM. Secondary |
| * VMs are only allowed to inject interrupts into their own vCPUs. |
| */ |
| return current_vm_id == HF_PRIMARY_VM_ID || |
| current_vm_id == target_vm_id; |
| } |
| |
| /** |
| * Injects a virtual interrupt of the given ID into the given target vCPU. |
| * This doesn't cause the vCPU to actually be run immediately; it will be taken |
| * when the vCPU is next run, which is up to the scheduler. |
| * |
| * Returns: |
| * - -1 on failure because the target VM or vCPU doesn't exist, the interrupt |
| * ID is invalid, or the current VM is not allowed to inject interrupts to |
| * the target VM. |
| * - 0 on success if no further action is needed. |
| * - 1 if it was called by the primary VM and the primary VM now needs to wake |
| * up or kick the target vCPU. |
| */ |
| int64_t api_interrupt_inject(ffa_vm_id_t target_vm_id, |
| ffa_vcpu_index_t target_vcpu_idx, uint32_t intid, |
| struct vcpu *current, struct vcpu **next) |
| { |
| struct vcpu *target_vcpu; |
| struct vm *target_vm = vm_find(target_vm_id); |
| |
| if (intid >= HF_NUM_INTIDS) { |
| return -1; |
| } |
| |
| if (target_vm == NULL) { |
| return -1; |
| } |
| |
| if (target_vcpu_idx >= target_vm->vcpu_count) { |
| /* The requested vCPU must exist. */ |
| return -1; |
| } |
| |
| if (!is_injection_allowed(target_vm_id, current)) { |
| return -1; |
| } |
| |
| target_vcpu = vm_get_vcpu(target_vm, target_vcpu_idx); |
| |
| dlog_info("Injecting IRQ %d for VM %d vCPU %d from VM %d vCPU %d\n", |
| intid, target_vm_id, target_vcpu_idx, current->vm->id, |
| current->cpu->id); |
| return internal_interrupt_inject(target_vcpu, intid, current, next); |
| } |
| |
| /** Returns the version of the implemented FF-A specification. */ |
| struct ffa_value api_ffa_version(uint32_t requested_version) |
| { |
| /* |
| * Ensure that both major and minor revision representation occupies at |
| * most 15 bits. |
| */ |
| static_assert(0x8000 > FFA_VERSION_MAJOR, |
| "Major revision representation takes more than 15 bits."); |
| static_assert(0x10000 > FFA_VERSION_MINOR, |
| "Minor revision representation takes more than 16 bits."); |
| if (requested_version & FFA_VERSION_RESERVED_BIT) { |
| /* Invalid encoding, return an error. */ |
| return (struct ffa_value){.func = FFA_NOT_SUPPORTED}; |
| } |
| |
| return (struct ffa_value){ |
| .func = (FFA_VERSION_MAJOR << FFA_VERSION_MAJOR_OFFSET) | |
| FFA_VERSION_MINOR}; |
| } |
| |
| int64_t api_debug_log(char c, struct vcpu *current) |
| { |
| bool flush; |
| struct vm *vm = current->vm; |
| struct vm_locked vm_locked = vm_lock(vm); |
| |
| if (c == '\n' || c == '\0') { |
| flush = true; |
| } else { |
| vm->log_buffer[vm->log_buffer_length++] = c; |
| flush = (vm->log_buffer_length == sizeof(vm->log_buffer)); |
| } |
| |
| if (flush) { |
| dlog_flush_vm_buffer(vm->id, vm->log_buffer, |
| vm->log_buffer_length); |
| vm->log_buffer_length = 0; |
| } |
| |
| vm_unlock(&vm_locked); |
| |
| return 0; |
| } |
| |
| /** |
| * Discovery function returning information about the implementation of optional |
| * FF-A interfaces. |
| */ |
| struct ffa_value api_ffa_features(uint32_t function_id) |
| { |
| switch (function_id) { |
| case FFA_ERROR_32: |
| case FFA_SUCCESS_32: |
| case FFA_INTERRUPT_32: |
| case FFA_VERSION_32: |
| case FFA_FEATURES_32: |
| case FFA_RX_RELEASE_32: |
| case FFA_RXTX_MAP_64: |
| case FFA_ID_GET_32: |
| case FFA_MSG_POLL_32: |
| case FFA_MSG_WAIT_32: |
| case FFA_YIELD_32: |
| case FFA_RUN_32: |
| case FFA_MSG_SEND_32: |
| case FFA_MEM_DONATE_32: |
| case FFA_MEM_LEND_32: |
| case FFA_MEM_SHARE_32: |
| case FFA_MEM_RETRIEVE_REQ_32: |
| case FFA_MEM_RETRIEVE_RESP_32: |
| case FFA_MEM_RELINQUISH_32: |
| case FFA_MEM_RECLAIM_32: |
| return (struct ffa_value){.func = FFA_SUCCESS_32}; |
| default: |
| return ffa_error(FFA_NOT_SUPPORTED); |
| } |
| } |
| |
| struct ffa_value api_ffa_mem_send(uint32_t share_func, uint32_t length, |
| uint32_t fragment_length, ipaddr_t address, |
| uint32_t page_count, struct vcpu *current) |
| { |
| struct vm *from = current->vm; |
| struct vm *to; |
| const void *from_msg; |
| struct ffa_memory_region *memory_region; |
| struct ffa_value ret; |
| |
| if (ipa_addr(address) != 0 || page_count != 0) { |
| /* |
| * Hafnium only supports passing the descriptor in the TX |
| * mailbox. |
| */ |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| if (fragment_length > length) { |
| dlog_verbose( |
| "Fragment length %d greater than total length %d.\n", |
| fragment_length, length); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| if (fragment_length < sizeof(struct ffa_memory_region) + |
| sizeof(struct ffa_memory_access)) { |
| dlog_verbose( |
| "Initial fragment length %d smaller than header size " |
| "%d.\n", |
| fragment_length, |
| sizeof(struct ffa_memory_region) + |
| sizeof(struct ffa_memory_access)); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * Check that the sender has configured its send buffer. If the TX |
| * mailbox at from_msg is configured (i.e. from_msg != NULL) then it can |
| * be safely accessed after releasing the lock since the TX mailbox |
| * address can only be configured once. |
| */ |
| sl_lock(&from->lock); |
| from_msg = from->mailbox.send; |
| sl_unlock(&from->lock); |
| |
| if (from_msg == NULL) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * Copy the memory region descriptor to a fresh page from the memory |
| * pool. This prevents the sender from changing it underneath us, and |
| * also lets us keep it around in the share state table if needed. |
| */ |
| if (fragment_length > HF_MAILBOX_SIZE || |
| fragment_length > MM_PPOOL_ENTRY_SIZE) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| memory_region = (struct ffa_memory_region *)mpool_alloc(&api_page_pool); |
| if (memory_region == NULL) { |
| dlog_verbose("Failed to allocate memory region copy.\n"); |
| return ffa_error(FFA_NO_MEMORY); |
| } |
| memcpy_s(memory_region, MM_PPOOL_ENTRY_SIZE, from_msg, fragment_length); |
| |
| /* The sender must match the caller. */ |
| if (memory_region->sender != from->id) { |
| dlog_verbose("Memory region sender doesn't match caller.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| if (memory_region->receiver_count != 1) { |
| /* Hafnium doesn't support multi-way memory sharing for now. */ |
| dlog_verbose( |
| "Multi-way memory sharing not supported (got %d " |
| "endpoint memory access descriptors, expected 1).\n", |
| memory_region->receiver_count); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| /* |
| * Ensure that the receiver VM exists and isn't the same as the sender. |
| */ |
| to = vm_find(memory_region->receivers[0].receiver_permissions.receiver); |
| if (to == NULL || to == from) { |
| dlog_verbose("Invalid receiver.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| if (to->id == HF_TEE_VM_ID) { |
| /* |
| * The 'to' VM lock is only needed in the case that it is the |
| * TEE VM. |
| */ |
| struct two_vm_locked vm_to_from_lock = vm_lock_both(to, from); |
| |
| if (msg_receiver_busy(vm_to_from_lock.vm1, from, false)) { |
| ret = ffa_error(FFA_BUSY); |
| goto out_unlock; |
| } |
| |
| ret = ffa_memory_tee_send( |
| vm_to_from_lock.vm2, vm_to_from_lock.vm1, memory_region, |
| length, fragment_length, share_func, &api_page_pool); |
| /* |
| * ffa_tee_memory_send takes ownership of the memory_region, so |
| * make sure we don't free it. |
| */ |
| memory_region = NULL; |
| |
| out_unlock: |
| vm_unlock(&vm_to_from_lock.vm1); |
| vm_unlock(&vm_to_from_lock.vm2); |
| } else { |
| struct vm_locked from_locked = vm_lock(from); |
| |
| ret = ffa_memory_send(from_locked, memory_region, length, |
| fragment_length, share_func, |
| &api_page_pool); |
| /* |
| * ffa_memory_send takes ownership of the memory_region, so |
| * make sure we don't free it. |
| */ |
| memory_region = NULL; |
| |
| vm_unlock(&from_locked); |
| } |
| |
| out: |
| if (memory_region != NULL) { |
| mpool_free(&api_page_pool, memory_region); |
| } |
| |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_mem_retrieve_req(uint32_t length, |
| uint32_t fragment_length, |
| ipaddr_t address, uint32_t page_count, |
| struct vcpu *current) |
| { |
| struct vm *to = current->vm; |
| struct vm_locked to_locked; |
| const void *to_msg; |
| struct ffa_memory_region *retrieve_request; |
| uint32_t message_buffer_size; |
| struct ffa_value ret; |
| |
| if (ipa_addr(address) != 0 || page_count != 0) { |
| /* |
| * Hafnium only supports passing the descriptor in the TX |
| * mailbox. |
| */ |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| if (fragment_length != length) { |
| dlog_verbose("Fragmentation not yet supported.\n"); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| retrieve_request = |
| (struct ffa_memory_region *)cpu_get_buffer(current->cpu); |
| message_buffer_size = cpu_get_buffer_size(current->cpu); |
| if (length > HF_MAILBOX_SIZE || length > message_buffer_size) { |
| dlog_verbose("Retrieve request too long.\n"); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| to_locked = vm_lock(to); |
| to_msg = to->mailbox.send; |
| |
| if (to_msg == NULL) { |
| dlog_verbose("TX buffer not setup.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| /* |
| * Copy the retrieve request descriptor to an internal buffer, so that |
| * the caller can't change it underneath us. |
| */ |
| memcpy_s(retrieve_request, message_buffer_size, to_msg, length); |
| |
| if (msg_receiver_busy(to_locked, NULL, false)) { |
| /* |
| * Can't retrieve memory information if the mailbox is not |
| * available. |
| */ |
| dlog_verbose("RX buffer not ready.\n"); |
| ret = ffa_error(FFA_BUSY); |
| goto out; |
| } |
| |
| ret = ffa_memory_retrieve(to_locked, retrieve_request, length, |
| &api_page_pool); |
| |
| out: |
| vm_unlock(&to_locked); |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_mem_relinquish(struct vcpu *current) |
| { |
| struct vm *from = current->vm; |
| struct vm_locked from_locked; |
| const void *from_msg; |
| struct ffa_mem_relinquish *relinquish_request; |
| uint32_t message_buffer_size; |
| struct ffa_value ret; |
| uint32_t length; |
| |
| from_locked = vm_lock(from); |
| from_msg = from->mailbox.send; |
| |
| if (from_msg == NULL) { |
| dlog_verbose("TX buffer not setup.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| /* |
| * Calculate length from relinquish descriptor before copying. We will |
| * check again later to make sure it hasn't changed. |
| */ |
| length = sizeof(struct ffa_mem_relinquish) + |
| ((struct ffa_mem_relinquish *)from_msg)->endpoint_count * |
| sizeof(ffa_vm_id_t); |
| /* |
| * Copy the relinquish descriptor to an internal buffer, so that the |
| * caller can't change it underneath us. |
| */ |
| relinquish_request = |
| (struct ffa_mem_relinquish *)cpu_get_buffer(current->cpu); |
| message_buffer_size = cpu_get_buffer_size(current->cpu); |
| if (length > HF_MAILBOX_SIZE || length > message_buffer_size) { |
| dlog_verbose("Relinquish message too long.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| memcpy_s(relinquish_request, message_buffer_size, from_msg, length); |
| |
| if (sizeof(struct ffa_mem_relinquish) + |
| relinquish_request->endpoint_count * sizeof(ffa_vm_id_t) != |
| length) { |
| dlog_verbose( |
| "Endpoint count changed while copying to internal " |
| "buffer.\n"); |
| ret = ffa_error(FFA_INVALID_PARAMETERS); |
| goto out; |
| } |
| |
| ret = ffa_memory_relinquish(from_locked, relinquish_request, |
| &api_page_pool); |
| |
| out: |
| vm_unlock(&from_locked); |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_mem_reclaim(ffa_memory_handle_t handle, |
| ffa_memory_region_flags_t flags, |
| struct vcpu *current) |
| { |
| struct vm *to = current->vm; |
| struct ffa_value ret; |
| |
| if ((handle & FFA_MEMORY_HANDLE_ALLOCATOR_MASK) == |
| FFA_MEMORY_HANDLE_ALLOCATOR_HYPERVISOR) { |
| struct vm_locked to_locked = vm_lock(to); |
| |
| ret = ffa_memory_reclaim(to_locked, handle, flags, |
| &api_page_pool); |
| |
| vm_unlock(&to_locked); |
| } else { |
| struct vm *from = vm_find(HF_TEE_VM_ID); |
| struct two_vm_locked vm_to_from_lock = vm_lock_both(to, from); |
| |
| ret = ffa_memory_tee_reclaim(vm_to_from_lock.vm1, |
| vm_to_from_lock.vm2, handle, flags, |
| &api_page_pool); |
| |
| vm_unlock(&vm_to_from_lock.vm1); |
| vm_unlock(&vm_to_from_lock.vm2); |
| } |
| |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_mem_frag_rx(ffa_memory_handle_t handle, |
| uint32_t fragment_offset, |
| ffa_vm_id_t sender_vm_id, |
| struct vcpu *current) |
| { |
| struct vm *to = current->vm; |
| struct vm_locked to_locked; |
| struct ffa_value ret; |
| |
| /* Sender ID MBZ at virtual instance. */ |
| if (sender_vm_id != 0) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| to_locked = vm_lock(to); |
| |
| if (msg_receiver_busy(to_locked, NULL, false)) { |
| /* |
| * Can't retrieve memory information if the mailbox is not |
| * available. |
| */ |
| dlog_verbose("RX buffer not ready.\n"); |
| ret = ffa_error(FFA_BUSY); |
| goto out; |
| } |
| |
| ret = ffa_memory_retrieve_continue(to_locked, handle, fragment_offset, |
| &api_page_pool); |
| |
| out: |
| vm_unlock(&to_locked); |
| return ret; |
| } |
| |
| struct ffa_value api_ffa_mem_frag_tx(ffa_memory_handle_t handle, |
| uint32_t fragment_length, |
| ffa_vm_id_t sender_vm_id, |
| struct vcpu *current) |
| { |
| struct vm *from = current->vm; |
| const void *from_msg; |
| void *fragment_copy; |
| struct ffa_value ret; |
| |
| /* Sender ID MBZ at virtual instance. */ |
| if (sender_vm_id != 0) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * Check that the sender has configured its send buffer. If the TX |
| * mailbox at from_msg is configured (i.e. from_msg != NULL) then it can |
| * be safely accessed after releasing the lock since the TX mailbox |
| * address can only be configured once. |
| */ |
| sl_lock(&from->lock); |
| from_msg = from->mailbox.send; |
| sl_unlock(&from->lock); |
| |
| if (from_msg == NULL) { |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| |
| /* |
| * Copy the fragment to a fresh page from the memory pool. This prevents |
| * the sender from changing it underneath us, and also lets us keep it |
| * around in the share state table if needed. |
| */ |
| if (fragment_length > HF_MAILBOX_SIZE || |
| fragment_length > MM_PPOOL_ENTRY_SIZE) { |
| dlog_verbose( |
| "Fragment length %d larger than mailbox size %d.\n", |
| fragment_length, HF_MAILBOX_SIZE); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| if (fragment_length < sizeof(struct ffa_memory_region_constituent) || |
| fragment_length % sizeof(struct ffa_memory_region_constituent) != |
| 0) { |
| dlog_verbose("Invalid fragment length %d.\n", fragment_length); |
| return ffa_error(FFA_INVALID_PARAMETERS); |
| } |
| fragment_copy = mpool_alloc(&api_page_pool); |
| if (fragment_copy == NULL) { |
| dlog_verbose("Failed to allocate fragment copy.\n"); |
| return ffa_error(FFA_NO_MEMORY); |
| } |
| memcpy_s(fragment_copy, MM_PPOOL_ENTRY_SIZE, from_msg, fragment_length); |
| |
| /* |
| * Hafnium doesn't support fragmentation of memory retrieve requests |
| * (because it doesn't support caller-specified mappings, so a request |
| * will never be larger than a single page), so this must be part of a |
| * memory send (i.e. donate, lend or share) request. |
| * |
| * We can tell from the handle whether the memory transaction is for the |
| * TEE or not. |
| */ |
| if ((handle & FFA_MEMORY_HANDLE_ALLOCATOR_MASK) == |
| FFA_MEMORY_HANDLE_ALLOCATOR_HYPERVISOR) { |
| struct vm_locked from_locked = vm_lock(from); |
| |
| ret = ffa_memory_send_continue(from_locked, fragment_copy, |
| fragment_length, handle, |
| &api_page_pool); |
| /* |
| * `ffa_memory_send_continue` takes ownership of the |
| * fragment_copy, so we don't need to free it here. |
| */ |
| vm_unlock(&from_locked); |
| } else { |
| struct vm *to = vm_find(HF_TEE_VM_ID); |
| struct two_vm_locked vm_to_from_lock = vm_lock_both(to, from); |
| |
| /* |
| * The TEE RX buffer state is checked in |
| * `ffa_memory_tee_send_continue` rather than here, as we need |
| * to return `FFA_MEM_FRAG_RX` with the current offset rather |
| * than FFA_ERROR FFA_BUSY in case it is busy. |
| */ |
| |
| ret = ffa_memory_tee_send_continue( |
| vm_to_from_lock.vm2, vm_to_from_lock.vm1, fragment_copy, |
| fragment_length, handle, &api_page_pool); |
| /* |
| * `ffa_memory_tee_send_continue` takes ownership of the |
| * fragment_copy, so we don't need to free it here. |
| */ |
| |
| vm_unlock(&vm_to_from_lock.vm1); |
| vm_unlock(&vm_to_from_lock.vm2); |
| } |
| |
| return ret; |
| } |