| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdnoreturn.h> |
| |
| #include "hf/arch/barriers.h" |
| #include "hf/arch/init.h" |
| #include "hf/arch/mm.h" |
| |
| #include "hf/api.h" |
| #include "hf/cpu.h" |
| #include "hf/dlog.h" |
| #include "hf/panic.h" |
| #include "hf/spci.h" |
| #include "hf/vm.h" |
| |
| #include "vmapi/hf/call.h" |
| |
| #include "msr.h" |
| #include "psci.h" |
| #include "psci_handler.h" |
| #include "smc.h" |
| |
| #define HCR_EL2_VI (1u << 7) |
| |
| struct hvc_handler_return { |
| uintreg_t user_ret; |
| struct vcpu *new; |
| }; |
| |
| /* Gets a reference to the currently executing vCPU. */ |
| static struct vcpu *current(void) |
| { |
| return (struct vcpu *)read_msr(tpidr_el2); |
| } |
| |
| /** |
| * Saves the state of per-vCPU peripherals, such as the virtual timer, and |
| * informs the arch-independent sections that registers have been saved. |
| */ |
| void complete_saving_state(struct vcpu *vcpu) |
| { |
| vcpu->regs.peripherals.cntv_cval_el0 = read_msr(cntv_cval_el0); |
| vcpu->regs.peripherals.cntv_ctl_el0 = read_msr(cntv_ctl_el0); |
| |
| api_regs_state_saved(vcpu); |
| |
| /* |
| * If switching away from the primary, copy the current EL0 virtual |
| * timer registers to the corresponding EL2 physical timer registers. |
| * This is used to emulate the virtual timer for the primary in case it |
| * should fire while the secondary is running. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| /* |
| * Clear timer control register before copying compare value, to |
| * avoid a spurious timer interrupt. This could be a problem if |
| * the interrupt is configured as edge-triggered, as it would |
| * then be latched in. |
| */ |
| write_msr(cnthp_ctl_el2, 0); |
| write_msr(cnthp_cval_el2, read_msr(cntv_cval_el0)); |
| write_msr(cnthp_ctl_el2, read_msr(cntv_ctl_el0)); |
| } |
| } |
| |
| /** |
| * Restores the state of per-vCPU peripherals, such as the virtual timer. |
| */ |
| void begin_restoring_state(struct vcpu *vcpu) |
| { |
| /* |
| * Clear timer control register before restoring compare value, to avoid |
| * a spurious timer interrupt. This could be a problem if the interrupt |
| * is configured as edge-triggered, as it would then be latched in. |
| */ |
| write_msr(cntv_ctl_el0, 0); |
| write_msr(cntv_cval_el0, vcpu->regs.peripherals.cntv_cval_el0); |
| write_msr(cntv_ctl_el0, vcpu->regs.peripherals.cntv_ctl_el0); |
| |
| /* |
| * If we are switching (back) to the primary, disable the EL2 physical |
| * timer which was being used to emulate the EL0 virtual timer, as the |
| * virtual timer is now running for the primary again. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| write_msr(cnthp_ctl_el2, 0); |
| write_msr(cnthp_cval_el2, 0); |
| } |
| } |
| |
| /** |
| * Invalidate all stage 1 TLB entries on the current (physical) CPU for the |
| * current VMID. |
| */ |
| static void invalidate_vm_tlb(void) |
| { |
| /* |
| * Ensure that the last VTTBR write has taken effect so we invalidate |
| * the right set of TLB entries. |
| */ |
| isb(); |
| |
| __asm__ volatile("tlbi vmalle1"); |
| |
| /* |
| * Ensure that no instructions are fetched for the VM until after the |
| * TLB invalidation has taken effect. |
| */ |
| isb(); |
| |
| /* |
| * Ensure that no data reads or writes for the VM happen until after the |
| * TLB invalidation has taken effect. Non-sharable is enough because the |
| * TLB is local to the CPU. |
| */ |
| dsb(nsh); |
| } |
| |
| /** |
| * Invalidates the TLB if a different vCPU is being run than the last vCPU of |
| * the same VM which was run on the current pCPU. |
| * |
| * This is necessary because VMs may (contrary to the architecture |
| * specification) use inconsistent ASIDs across vCPUs. c.f. KVM's similar |
| * workaround: |
| * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94d0e5980d6791b9 |
| */ |
| void maybe_invalidate_tlb(struct vcpu *vcpu) |
| { |
| size_t current_cpu_index = cpu_index(vcpu->cpu); |
| spci_vcpu_index_t new_vcpu_index = vcpu_index(vcpu); |
| |
| if (vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] != |
| new_vcpu_index) { |
| /* |
| * The vCPU has changed since the last time this VM was run on |
| * this pCPU, so we need to invalidate the TLB. |
| */ |
| invalidate_vm_tlb(); |
| |
| /* Record the fact that this vCPU is now running on this CPU. */ |
| vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] = |
| new_vcpu_index; |
| } |
| } |
| |
| noreturn void irq_current_exception(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("IRQ from current"); |
| } |
| |
| noreturn void fiq_current_exception(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("FIQ from current"); |
| } |
| |
| noreturn void serr_current_exception(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("SERR from current"); |
| } |
| |
| noreturn void sync_current_exception(uintreg_t elr, uintreg_t spsr) |
| { |
| uintreg_t esr = read_msr(esr_el2); |
| |
| (void)spsr; |
| |
| switch (esr >> 26) { |
| case 0x25: /* EC = 100101, Data abort. */ |
| dlog("Data abort: pc=%#x, esr=%#x, ec=%#x", elr, esr, |
| esr >> 26); |
| if (!(esr & (1u << 10))) { /* Check FnV bit. */ |
| dlog(", far=%#x", read_msr(far_el2)); |
| } else { |
| dlog(", far=invalid"); |
| } |
| |
| dlog("\n"); |
| break; |
| |
| default: |
| dlog("Unknown current sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| elr, esr, esr >> 26); |
| break; |
| } |
| |
| panic("EL2 exception"); |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register saved in the given |
| * arch_regs. |
| */ |
| static void set_virtual_interrupt(struct arch_regs *r, bool enable) |
| { |
| if (enable) { |
| r->lazy.hcr_el2 |= HCR_EL2_VI; |
| } else { |
| r->lazy.hcr_el2 &= ~HCR_EL2_VI; |
| } |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register. |
| */ |
| static void set_virtual_interrupt_current(bool enable) |
| { |
| uintreg_t hcr_el2 = read_msr(hcr_el2); |
| |
| if (enable) { |
| hcr_el2 |= HCR_EL2_VI; |
| } else { |
| hcr_el2 &= ~HCR_EL2_VI; |
| } |
| write_msr(hcr_el2, hcr_el2); |
| } |
| |
| static bool smc_check_client_privileges(const struct vcpu *vcpu) |
| { |
| (void)vcpu; /*UNUSED*/ |
| |
| /* |
| * TODO(b/132421503): Check for privileges based on manifest. |
| * Currently returns false, which maintains existing behavior. |
| */ |
| |
| return false; |
| } |
| |
| /** |
| * Applies SMC access control according to manifest. |
| * Forwards the call if access is granted. |
| * Returns true if call is forwarded. |
| */ |
| static bool smc_forwarder(const struct vcpu *vcpu, smc_res_t *ret) |
| { |
| uint32_t func = vcpu->regs.r[0]; |
| /* TODO(b/132421503): obtain vmid according to new scheme. */ |
| uint32_t client_id = vcpu->vm->id; |
| |
| if (smc_check_client_privileges(vcpu)) { |
| *ret = smc_forward(func, vcpu->regs.r[1], vcpu->regs.r[2], |
| vcpu->regs.r[3], vcpu->regs.r[4], |
| vcpu->regs.r[5], vcpu->regs.r[6], client_id); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Processes SMC instruction calls. |
| */ |
| static bool smc_handler(struct vcpu *vcpu, smc_res_t *ret, struct vcpu **next) |
| { |
| uint32_t func = vcpu->regs.r[0]; |
| |
| if (psci_handler(vcpu, func, vcpu->regs.r[1], vcpu->regs.r[2], |
| vcpu->regs.r[3], &(ret->res0), next)) { |
| /* SMC PSCI calls are processed by the PSCI handler. */ |
| return true; |
| } |
| |
| switch (func & ~SMCCC_CONVENTION_MASK) { |
| case HF_DEBUG_LOG: |
| api_debug_log(vcpu->regs.r[1], vcpu); |
| return true; |
| } |
| |
| /* Remaining SMC calls need to be forwarded. */ |
| return smc_forwarder(vcpu, ret); |
| } |
| |
| struct hvc_handler_return hvc_handler(uintreg_t arg0, uintreg_t arg1, |
| uintreg_t arg2, uintreg_t arg3) |
| { |
| struct hvc_handler_return ret; |
| |
| ret.new = NULL; |
| |
| if (psci_handler(current(), arg0, arg1, arg2, arg3, &ret.user_ret, |
| &ret.new)) { |
| return ret; |
| } |
| |
| switch ((uint32_t)arg0) { |
| case SPCI_VERSION_32: |
| ret.user_ret = api_spci_version(); |
| break; |
| |
| case HF_VM_GET_ID: |
| ret.user_ret = api_vm_get_id(current()); |
| break; |
| |
| case HF_VM_GET_COUNT: |
| ret.user_ret = api_vm_get_count(); |
| break; |
| |
| case HF_VCPU_GET_COUNT: |
| ret.user_ret = api_vcpu_get_count(arg1, current()); |
| break; |
| |
| case HF_VCPU_RUN: |
| ret.user_ret = hf_vcpu_run_return_encode( |
| api_vcpu_run(arg1, arg2, current(), &ret.new)); |
| break; |
| |
| case SPCI_YIELD_32: |
| ret.user_ret = api_spci_yield(current(), &ret.new); |
| break; |
| |
| case HF_VM_CONFIGURE: |
| ret.user_ret = api_vm_configure(ipa_init(arg1), ipa_init(arg2), |
| current(), &ret.new); |
| break; |
| |
| case SPCI_MSG_SEND_32: |
| ret.user_ret = api_spci_msg_send(arg1, current(), &ret.new); |
| break; |
| |
| case SPCI_MSG_RECV_32: |
| ret.user_ret = api_spci_msg_recv(arg1, current(), &ret.new); |
| break; |
| |
| case HF_MAILBOX_CLEAR: |
| ret.user_ret = api_mailbox_clear(current(), &ret.new); |
| break; |
| |
| case HF_MAILBOX_WRITABLE_GET: |
| ret.user_ret = api_mailbox_writable_get(current()); |
| break; |
| |
| case HF_MAILBOX_WAITER_GET: |
| ret.user_ret = api_mailbox_waiter_get(arg1, current()); |
| break; |
| |
| case HF_INTERRUPT_ENABLE: |
| ret.user_ret = api_interrupt_enable(arg1, arg2, current()); |
| break; |
| |
| case HF_INTERRUPT_GET: |
| ret.user_ret = api_interrupt_get(current()); |
| break; |
| |
| case HF_INTERRUPT_INJECT: |
| ret.user_ret = api_interrupt_inject(arg1, arg2, arg3, current(), |
| &ret.new); |
| break; |
| |
| case HF_SHARE_MEMORY: |
| ret.user_ret = |
| api_share_memory(arg1 >> 32, ipa_init(arg2), arg3, |
| arg1 & 0xffffffff, current()); |
| break; |
| |
| case HF_DEBUG_LOG: |
| ret.user_ret = api_debug_log(arg1, current()); |
| break; |
| |
| default: |
| ret.user_ret = -1; |
| } |
| |
| /* Set or clear VI bit. */ |
| if (ret.new == NULL) { |
| /* |
| * Not switching vCPUs, set the bit for the current vCPU |
| * directly in the register. |
| */ |
| struct vcpu *vcpu = current(); |
| |
| sl_lock(&vcpu->lock); |
| set_virtual_interrupt_current( |
| vcpu->interrupts.enabled_and_pending_count > 0); |
| sl_unlock(&vcpu->lock); |
| } else { |
| /* |
| * About to switch vCPUs, set the bit for the vCPU to which we |
| * are switching in the saved copy of the register. |
| */ |
| sl_lock(&ret.new->lock); |
| set_virtual_interrupt( |
| &ret.new->regs, |
| ret.new->interrupts.enabled_and_pending_count > 0); |
| sl_unlock(&ret.new->lock); |
| } |
| |
| return ret; |
| } |
| |
| struct vcpu *irq_lower(void) |
| { |
| /* |
| * Switch back to primary VM, interrupts will be handled there. |
| * |
| * If the VM has aborted, this vCPU will be aborted when the scheduler |
| * tries to run it again. This means the interrupt will not be delayed |
| * by the aborted VM. |
| * |
| * TODO: Only switch when the interrupt isn't for the current VM. |
| */ |
| return api_preempt(current()); |
| } |
| |
| struct vcpu *fiq_lower(void) |
| { |
| return irq_lower(); |
| } |
| |
| struct vcpu *serr_lower(void) |
| { |
| dlog("SERR from lower\n"); |
| return api_abort(current()); |
| } |
| |
| /** |
| * Initialises a fault info structure. It assumes that an FnV bit exists at |
| * bit offset 10 of the ESR, and that it is only valid when the bottom 6 bits of |
| * the ESR (the fault status code) are 010000; this is the case for both |
| * instruction and data aborts, but not necessarily for other exception reasons. |
| */ |
| static struct vcpu_fault_info fault_info_init(uintreg_t esr, |
| const struct vcpu *vcpu, int mode) |
| { |
| uint32_t fsc = esr & 0x3f; |
| struct vcpu_fault_info r; |
| |
| r.mode = mode; |
| r.pc = va_init(vcpu->regs.pc); |
| |
| /* |
| * Check the FnV bit, which is only valid if dfsc/ifsc is 010000. It |
| * indicates that we cannot rely on far_el2. |
| */ |
| if (fsc == 0x10 && esr & (1u << 10)) { |
| r.vaddr = va_init(0); |
| r.ipaddr = ipa_init(read_msr(hpfar_el2) << 8); |
| } else { |
| r.vaddr = va_init(read_msr(far_el2)); |
| r.ipaddr = ipa_init((read_msr(hpfar_el2) << 8) | |
| (read_msr(far_el2) & (PAGE_SIZE - 1))); |
| } |
| |
| return r; |
| } |
| |
| struct vcpu *sync_lower_exception(uintreg_t esr) |
| { |
| struct vcpu *vcpu = current(); |
| struct vcpu_fault_info info; |
| struct vcpu *new_vcpu; |
| |
| switch (esr >> 26) { |
| case 0x01: /* EC = 000001, WFI or WFE. */ |
| /* Skip the instruction. */ |
| vcpu->regs.pc += (esr & (1u << 25)) ? 4 : 2; |
| /* Check TI bit of ISS, 0 = WFI, 1 = WFE. */ |
| if (esr & 1) { |
| /* WFE */ |
| /* |
| * TODO: consider giving the scheduler more context, |
| * somehow. |
| */ |
| api_spci_yield(vcpu, &new_vcpu); |
| return new_vcpu; |
| } |
| /* WFI */ |
| return api_wait_for_interrupt(vcpu); |
| |
| case 0x24: /* EC = 100100, Data abort. */ |
| info = fault_info_init( |
| esr, vcpu, (esr & (1u << 6)) ? MM_MODE_W : MM_MODE_R); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| break; |
| |
| case 0x20: /* EC = 100000, Instruction abort. */ |
| info = fault_info_init(esr, vcpu, MM_MODE_X); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| break; |
| |
| case 0x17: /* EC = 010111, SMC instruction. */ { |
| uintreg_t smc_pc = vcpu->regs.pc; |
| smc_res_t ret; |
| struct vcpu *next = NULL; |
| |
| if (!smc_handler(vcpu, &ret, &next)) { |
| /* TODO(b/132421503): handle SMC forward rejection */ |
| dlog("Unsupported SMC call: %#x\n", vcpu->regs.r[0]); |
| ret.res0 = PSCI_ERROR_NOT_SUPPORTED; |
| } |
| |
| /* Skip the SMC instruction. */ |
| vcpu->regs.pc = smc_pc + (esr & (1u << 25) ? 4 : 2); |
| vcpu->regs.r[0] = ret.res0; |
| vcpu->regs.r[1] = ret.res1; |
| vcpu->regs.r[2] = ret.res2; |
| vcpu->regs.r[3] = ret.res3; |
| return next; |
| } |
| |
| default: |
| dlog("Unknown lower sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| vcpu->regs.pc, esr, esr >> 26); |
| break; |
| } |
| |
| /* The exception wasn't handled so abort the VM. */ |
| return api_abort(vcpu); |
| } |