blob: 6b9e37c62c2a27d30bc9a8a36d859920362d679f [file] [log] [blame]
#include "hf/api.h"
#include <assert.h>
#include "hf/std.h"
#include "hf/vm.h"
#include "vmapi/hf/call.h"
static_assert(HF_RPC_REQUEST_MAX_SIZE == PAGE_SIZE,
"Currently, a page is mapped for the send and receive buffers so "
"the maximum request is the size of a page.");
/**
* Switches the physical CPU back to the corresponding vcpu of the primary VM.
*/
static struct vcpu *api_switch_to_primary(size_t primary_retval,
enum vcpu_state secondary_state)
{
struct vcpu *vcpu = cpu()->current;
struct vm *primary = vm_get(HF_PRIMARY_VM_ID);
struct vcpu *next = &primary->vcpus[cpu_index(cpu())];
/* Switch back to primary VM. */
vm_set_current(primary);
/*
* Inidicate to primary VM that this vcpu blocked waiting for an
* interrupt.
*/
arch_regs_set_retval(&next->regs, primary_retval);
/* Mark the vcpu as waiting. */
sl_lock(&vcpu->lock);
vcpu->state = secondary_state;
sl_unlock(&vcpu->lock);
return next;
}
/**
* Returns the number of VMs configured to run.
*/
int32_t api_vm_get_count(void)
{
return vm_get_count();
}
/**
* Returns the number of vcpus configured in the given VM.
*/
int32_t api_vcpu_get_count(uint32_t vm_id)
{
struct vm *vm;
/* Only the primary VM needs to know about vcpus for scheduling. */
if (cpu()->current->vm->id != HF_PRIMARY_VM_ID) {
return -1;
}
vm = vm_get(vm_id);
if (vm == NULL) {
return -1;
}
return vm->vcpu_count;
}
/**
* Runs the given vcpu of the given vm.
*/
int32_t api_vcpu_run(uint32_t vm_id, uint32_t vcpu_idx, struct vcpu **next)
{
struct vm *vm;
struct vcpu *vcpu;
int32_t ret;
/* Only the primary VM can switch vcpus. */
if (cpu()->current->vm->id != HF_PRIMARY_VM_ID) {
goto fail;
}
/* Only secondary VM vcpus can be run. */
if (vm_id == HF_PRIMARY_VM_ID) {
goto fail;
}
/* The requested VM must exist. */
vm = vm_get(vm_id);
if (vm == NULL) {
goto fail;
}
/* The requested vcpu must exist. */
if (vcpu_idx >= vm->vcpu_count) {
goto fail;
}
vcpu = &vm->vcpus[vcpu_idx];
sl_lock(&vcpu->lock);
if (vcpu->state != vcpu_state_ready) {
ret = HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_WAIT_FOR_INTERRUPT, 0);
} else {
vcpu->state = vcpu_state_running;
vm_set_current(vm);
*next = vcpu;
ret = HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_YIELD, 0);
}
sl_unlock(&vcpu->lock);
return ret;
fail:
return HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_WAIT_FOR_INTERRUPT, 0);
}
/**
* Configures the VM to send/receive data through the specified pages. The pages
* must not be shared.
*/
int32_t api_vm_configure(ipaddr_t send, ipaddr_t recv)
{
struct vm *vm = cpu()->current->vm;
paddr_t pa_send_begin;
paddr_t pa_send_end;
paddr_t pa_recv_begin;
paddr_t pa_recv_end;
int32_t ret;
/* Fail if addresses are not page-aligned. */
if ((ipa_addr(send) & (PAGE_SIZE - 1)) ||
(ipa_addr(recv) & (PAGE_SIZE - 1))) {
return -1;
}
sl_lock(&vm->lock);
/* We only allow these to be setup once. */
if (vm->rpc.send || vm->rpc.recv) {
ret = -1;
goto exit;
}
/*
* TODO: Once memory sharing is implemented, we need to make sure that
* these pages aren't and won't be shared.
*/
/*
* Convert the intermediate physical addresses to physical address
* provided the address was acessible from the VM which ensures that the
* caller isn't trying to use another VM's memory.
*/
if (!mm_vm_translate(&vm->ptable, send, &pa_send_begin) ||
!mm_vm_translate(&vm->ptable, recv, &pa_recv_begin)) {
ret = -1;
goto exit;
}
/* Fail if the same page is used for the send and receive pages. */
if (pa_addr(pa_send_begin) == pa_addr(pa_recv_begin)) {
ret = -1;
goto exit;
}
pa_send_end = pa_add(pa_send_begin, PAGE_SIZE);
pa_recv_end = pa_add(pa_recv_begin, PAGE_SIZE);
/* Map the send page as read-only in the hypervisor address space. */
vm->rpc.send = mm_identity_map(pa_send_begin, pa_send_end, MM_MODE_R);
if (!vm->rpc.send) {
ret = -1;
goto exit;
}
/*
* Map the receive page as writable in the hypervisor address space. On
* failure, unmap the send page before returning.
*/
vm->rpc.recv = mm_identity_map(pa_recv_begin, pa_recv_end, MM_MODE_W);
if (!vm->rpc.recv) {
vm->rpc.send = NULL;
mm_unmap(pa_send_begin, pa_send_end, 0);
ret = -1;
goto exit;
}
/* TODO: Notify any waiters. */
ret = 0;
exit:
sl_unlock(&vm->lock);
return ret;
}
/**
* Sends an RPC request from the primary VM to a secondary VM. Data is copied
* from the caller's send buffer to the destination's receive buffer.
*/
int32_t api_rpc_request(uint32_t vm_id, size_t size)
{
struct vm *from = cpu()->current->vm;
struct vm *to;
const void *from_buf;
int32_t ret;
/* Basic argument validation. */
if (size > HF_RPC_REQUEST_MAX_SIZE) {
return -1;
}
/* Disallow reflexive requests as this suggests an error in the VM. */
if (vm_id == from->id) {
return -1;
}
/* Ensure the target VM exists. */
to = vm_get(vm_id);
if (to == NULL) {
return -1;
}
/* Only the primary VM can make calls. */
if (from->id != HF_PRIMARY_VM_ID) {
return -1;
}
/*
* Check that the sender has configured its send buffer. It is safe to
* use from_buf after releasing the lock because the buffer cannot be
* modified once it's configured.
*/
sl_lock(&from->lock);
from_buf = from->rpc.send;
sl_unlock(&from->lock);
if (!from_buf) {
return -1;
}
sl_lock(&to->lock);
if (to->rpc.state != rpc_state_idle || !to->rpc.recv) {
/* Fail if the target isn't currently ready to receive data. */
ret = -1;
} else {
/* Copy data. */
memcpy(to->rpc.recv, from_buf, size);
to->rpc.recv_bytes = size;
if (!to->rpc.recv_waiter) {
to->rpc.state = rpc_state_pending;
ret = to->vcpu_count;
} else {
struct vcpu *to_vcpu = to->rpc.recv_waiter;
to->rpc.state = rpc_state_inflight;
/*
* Take target vcpu out of waiter list and mark as ready
* to run again.
*/
sl_lock(&to_vcpu->lock);
to->rpc.recv_waiter = to_vcpu->rpc_next;
to_vcpu->state = vcpu_state_ready;
arch_regs_set_retval(&to_vcpu->regs, size);
sl_unlock(&to_vcpu->lock);
ret = to_vcpu - to->vcpus;
}
}
sl_unlock(&to->lock);
return ret;
}
/**
* Reads a request sent from a previous call to api_rpc_request. If one isn't
* available, this function can optionally block the caller until one becomes
* available.
*
* Once the caller has completed handling a request, it must indicate it by
* either calling api_rpc_reply or api_rpc_ack. No new requests can be accepted
* until the current one is acknowledged.
*/
int32_t api_rpc_read_request(bool block, struct vcpu **next)
{
struct vcpu *vcpu = cpu()->current;
struct vm *vm = vcpu->vm;
struct vm *primary = vm_get(HF_PRIMARY_VM_ID);
int32_t ret;
/* Only the secondary VMs can receive calls. */
if (vm->id == HF_PRIMARY_VM_ID) {
return -1;
}
sl_lock(&vm->lock);
if (vm->rpc.state == rpc_state_pending) {
ret = vm->rpc.recv_bytes;
vm->rpc.state = rpc_state_inflight;
} else if (!block) {
ret = -1;
} else {
sl_lock(&vcpu->lock);
vcpu->state = vcpu_state_blocked_rpc;
/* Push vcpu into waiter list. */
vcpu->rpc_next = vm->rpc.recv_waiter;
vm->rpc.recv_waiter = vcpu;
sl_unlock(&vcpu->lock);
/* Switch back to primary vm. */
*next = &primary->vcpus[cpu_index(cpu())];
vm_set_current(primary);
/*
* Inidicate to primary VM that this vcpu blocked waiting for an
* interrupt.
*/
arch_regs_set_retval(
&(*next)->regs,
HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_WAIT_FOR_INTERRUPT,
0));
ret = 0;
}
sl_unlock(&vm->lock);
return ret;
}
/**
* Sends a reply from a secondary VM to the primary VM. Data is copied from the
* caller's send buffer to the destination's receive buffer.
*
* It can optionally acknowledge the pending request.
*/
int32_t api_rpc_reply(size_t size, bool ack, struct vcpu **next)
{
struct vm *from = cpu()->current->vm;
struct vm *to;
const void *from_buf;
/* Basic argument validation. */
if (size > PAGE_SIZE) {
return -1;
}
/* Only the secondary VM can send responses. */
if (from->id == HF_PRIMARY_VM_ID) {
return -1;
}
/* Acknowledge the current pending request if requested. */
if (ack) {
api_rpc_ack();
}
/*
* Check that the sender has configured its send buffer. It is safe to
* use from_buf after releasing the lock because the buffer cannot be
* modified once it's configured.
*/
sl_lock(&from->lock);
from_buf = from->rpc.send;
sl_unlock(&from->lock);
if (!from_buf) {
return -1;
}
to = vm_get(HF_PRIMARY_VM_ID);
sl_lock(&to->lock);
if (to->rpc.state != rpc_state_idle || !to->rpc.recv) {
/*
* Fail if the target isn't currently ready to receive a
* response.
*/
sl_unlock(&to->lock);
return -1;
}
/* Copy data. */
memcpy(to->rpc.recv, from_buf, size);
to->rpc.recv_bytes = size;
to->rpc.state = rpc_state_inflight;
sl_unlock(&to->lock);
/*
* Switch back to primary VM so that it is aware that a response was
* received. But we leave the current vcpu still runnable.
*/
*next = api_switch_to_primary(
HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_RESPONSE_READY, size),
vcpu_state_ready);
return 0;
}
/**
* Acknowledges that either a request or a reply has been received and handled.
* After this call completes, the caller will be able to receive additional
* requests or replies.
*/
int32_t api_rpc_ack(void)
{
struct vm *vm = cpu()->current->vm;
int32_t ret;
sl_lock(&vm->lock);
if (vm->rpc.state != rpc_state_inflight) {
ret = -1;
} else {
ret = 0;
vm->rpc.state = rpc_state_idle;
}
sl_unlock(&vm->lock);
if (ret == 0) {
/* TODO: Notify waiters, if any. */
}
return ret;
}
/**
* Returns to the primary vm leaving the current vcpu ready to be scheduled
* again.
*/
struct vcpu *api_yield(void)
{
return api_switch_to_primary(HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_YIELD, 0),
vcpu_state_ready);
}
/**
* Puts the current vcpu in wait for interrupt mode, and returns to the primary
* vm.
*/
struct vcpu *api_wait_for_interrupt(void)
{
return api_switch_to_primary(
HF_VCPU_RUN_RESPONSE(HF_VCPU_RUN_WAIT_FOR_INTERRUPT, 0),
vcpu_state_blocked_interrupt);
}