| /* |
| * Copyright 2018 The Hafnium Authors. |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <stdnoreturn.h> |
| |
| #include "hf/arch/barriers.h" |
| #include "hf/arch/init.h" |
| #include "hf/arch/mm.h" |
| #include "hf/arch/plat/smc.h" |
| |
| #include "hf/api.h" |
| #include "hf/check.h" |
| #include "hf/cpu.h" |
| #include "hf/dlog.h" |
| #include "hf/panic.h" |
| #include "hf/spci.h" |
| #include "hf/vm.h" |
| |
| #include "vmapi/hf/call.h" |
| |
| #include "debug_el1.h" |
| #include "feature_id.h" |
| #include "msr.h" |
| #include "perfmon.h" |
| #include "psci.h" |
| #include "psci_handler.h" |
| #include "smc.h" |
| #include "sysregs.h" |
| |
| /** |
| * Gets the value to increment for the next PC. |
| * The ESR encodes whether the instruction is 2 bytes or 4 bytes long. |
| */ |
| #define GET_NEXT_PC_INC(esr) (GET_ESR_IL(esr) ? 4 : 2) |
| |
| /** |
| * The Client ID field within X7 for an SMC64 call. |
| */ |
| #define CLIENT_ID_MASK UINT64_C(0xffff) |
| |
| /** |
| * Returns a reference to the currently executing vCPU. |
| */ |
| static struct vcpu *current(void) |
| { |
| return (struct vcpu *)read_msr(tpidr_el2); |
| } |
| |
| /** |
| * Saves the state of per-vCPU peripherals, such as the virtual timer, and |
| * informs the arch-independent sections that registers have been saved. |
| */ |
| void complete_saving_state(struct vcpu *vcpu) |
| { |
| vcpu->regs.peripherals.cntv_cval_el0 = read_msr(cntv_cval_el0); |
| vcpu->regs.peripherals.cntv_ctl_el0 = read_msr(cntv_ctl_el0); |
| |
| api_regs_state_saved(vcpu); |
| |
| /* |
| * If switching away from the primary, copy the current EL0 virtual |
| * timer registers to the corresponding EL2 physical timer registers. |
| * This is used to emulate the virtual timer for the primary in case it |
| * should fire while the secondary is running. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| /* |
| * Clear timer control register before copying compare value, to |
| * avoid a spurious timer interrupt. This could be a problem if |
| * the interrupt is configured as edge-triggered, as it would |
| * then be latched in. |
| */ |
| write_msr(cnthp_ctl_el2, 0); |
| write_msr(cnthp_cval_el2, read_msr(cntv_cval_el0)); |
| write_msr(cnthp_ctl_el2, read_msr(cntv_ctl_el0)); |
| } |
| } |
| |
| /** |
| * Restores the state of per-vCPU peripherals, such as the virtual timer. |
| */ |
| void begin_restoring_state(struct vcpu *vcpu) |
| { |
| /* |
| * Clear timer control register before restoring compare value, to avoid |
| * a spurious timer interrupt. This could be a problem if the interrupt |
| * is configured as edge-triggered, as it would then be latched in. |
| */ |
| write_msr(cntv_ctl_el0, 0); |
| write_msr(cntv_cval_el0, vcpu->regs.peripherals.cntv_cval_el0); |
| write_msr(cntv_ctl_el0, vcpu->regs.peripherals.cntv_ctl_el0); |
| |
| /* |
| * If we are switching (back) to the primary, disable the EL2 physical |
| * timer which was being used to emulate the EL0 virtual timer, as the |
| * virtual timer is now running for the primary again. |
| */ |
| if (vcpu->vm->id == HF_PRIMARY_VM_ID) { |
| write_msr(cnthp_ctl_el2, 0); |
| write_msr(cnthp_cval_el2, 0); |
| } |
| } |
| |
| /** |
| * Invalidate all stage 1 TLB entries on the current (physical) CPU for the |
| * current VMID. |
| */ |
| static void invalidate_vm_tlb(void) |
| { |
| /* |
| * Ensure that the last VTTBR write has taken effect so we invalidate |
| * the right set of TLB entries. |
| */ |
| isb(); |
| |
| __asm__ volatile("tlbi vmalle1"); |
| |
| /* |
| * Ensure that no instructions are fetched for the VM until after the |
| * TLB invalidation has taken effect. |
| */ |
| isb(); |
| |
| /* |
| * Ensure that no data reads or writes for the VM happen until after the |
| * TLB invalidation has taken effect. Non-shareable is enough because |
| * the TLB is local to the CPU. |
| */ |
| dsb(nsh); |
| } |
| |
| /** |
| * Invalidates the TLB if a different vCPU is being run than the last vCPU of |
| * the same VM which was run on the current pCPU. |
| * |
| * This is necessary because VMs may (contrary to the architecture |
| * specification) use inconsistent ASIDs across vCPUs. c.f. KVM's similar |
| * workaround: |
| * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94d0e5980d6791b9 |
| */ |
| void maybe_invalidate_tlb(struct vcpu *vcpu) |
| { |
| size_t current_cpu_index = cpu_index(vcpu->cpu); |
| spci_vcpu_index_t new_vcpu_index = vcpu_index(vcpu); |
| |
| if (vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] != |
| new_vcpu_index) { |
| /* |
| * The vCPU has changed since the last time this VM was run on |
| * this pCPU, so we need to invalidate the TLB. |
| */ |
| invalidate_vm_tlb(); |
| |
| /* Record the fact that this vCPU is now running on this CPU. */ |
| vcpu->vm->arch.last_vcpu_on_cpu[current_cpu_index] = |
| new_vcpu_index; |
| } |
| } |
| |
| noreturn void irq_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("IRQ from current exception level."); |
| } |
| |
| noreturn void fiq_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("FIQ from current exception level."); |
| } |
| |
| noreturn void serr_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| (void)elr; |
| (void)spsr; |
| |
| panic("SError from current exception level."); |
| } |
| |
| noreturn void sync_current_exception_noreturn(uintreg_t elr, uintreg_t spsr) |
| { |
| uintreg_t esr = read_msr(esr_el2); |
| uintreg_t ec = GET_ESR_EC(esr); |
| |
| (void)spsr; |
| |
| switch (ec) { |
| case EC_DATA_ABORT_SAME_EL: |
| if (!(esr & (1U << 10))) { /* Check FnV bit. */ |
| dlog_error( |
| "Data abort: pc=%#x, esr=%#x, ec=%#x, " |
| "far=%#x\n", |
| elr, esr, ec, read_msr(far_el2)); |
| } else { |
| dlog_error( |
| "Data abort: pc=%#x, esr=%#x, ec=%#x, " |
| "far=invalid\n", |
| elr, esr, ec); |
| } |
| |
| break; |
| |
| default: |
| dlog_error( |
| "Unknown current sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| elr, esr, ec); |
| break; |
| } |
| |
| panic("EL2 exception"); |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register saved in the given |
| * arch_regs. |
| */ |
| static void set_virtual_interrupt(struct arch_regs *r, bool enable) |
| { |
| if (enable) { |
| r->lazy.hcr_el2 |= HCR_EL2_VI; |
| } else { |
| r->lazy.hcr_el2 &= ~HCR_EL2_VI; |
| } |
| } |
| |
| /** |
| * Sets or clears the VI bit in the HCR_EL2 register. |
| */ |
| static void set_virtual_interrupt_current(bool enable) |
| { |
| uintreg_t hcr_el2 = read_msr(hcr_el2); |
| |
| if (enable) { |
| hcr_el2 |= HCR_EL2_VI; |
| } else { |
| hcr_el2 &= ~HCR_EL2_VI; |
| } |
| write_msr(hcr_el2, hcr_el2); |
| } |
| |
| /** |
| * Checks whether to block an SMC being forwarded from a VM. |
| */ |
| static bool smc_is_blocked(const struct vm *vm, uint32_t func) |
| { |
| bool block_by_default = !vm->smc_whitelist.permissive; |
| |
| for (size_t i = 0; i < vm->smc_whitelist.smc_count; ++i) { |
| if (func == vm->smc_whitelist.smcs[i]) { |
| return false; |
| } |
| } |
| |
| dlog_notice("SMC %#010x attempted from VM %d, blocked=%d\n", func, |
| vm->id, block_by_default); |
| |
| /* Access is still allowed in permissive mode. */ |
| return block_by_default; |
| } |
| |
| /** |
| * Applies SMC access control according to manifest and forwards the call if |
| * access is granted. |
| */ |
| static void smc_forwarder(const struct vm *vm, struct spci_value *args) |
| { |
| struct spci_value ret; |
| uint32_t client_id = vm->id; |
| uintreg_t arg7 = args->arg7; |
| |
| if (smc_is_blocked(vm, args->func)) { |
| args->func = SMCCC_ERROR_UNKNOWN; |
| return; |
| } |
| |
| /* |
| * Set the Client ID but keep the existing Secure OS ID and anything |
| * else (currently unspecified) that the client may have passed in the |
| * upper bits. |
| */ |
| args->arg7 = client_id | (arg7 & ~CLIENT_ID_MASK); |
| ret = smc_forward(args->func, args->arg1, args->arg2, args->arg3, |
| args->arg4, args->arg5, args->arg6, args->arg7); |
| |
| /* |
| * Preserve the value passed by the caller, rather than the generated |
| * client_id. Note that this would also overwrite any return value that |
| * may be in x7, but the SMCs that we are forwarding are legacy calls |
| * from before SMCCC 1.2 so won't have more than 4 return values anyway. |
| */ |
| ret.arg7 = arg7; |
| |
| plat_smc_post_forward(*args, &ret); |
| |
| *args = ret; |
| } |
| |
| static bool spci_handler(struct spci_value *args, struct vcpu **next) |
| { |
| uint32_t func = args->func & ~SMCCC_CONVENTION_MASK; |
| |
| /* |
| * NOTE: When adding new methods to this handler update |
| * api_spci_features accordingly. |
| */ |
| switch (func) { |
| case SPCI_VERSION_32: |
| *args = api_spci_version(); |
| return true; |
| case SPCI_ID_GET_32: |
| *args = api_spci_id_get(current()); |
| return true; |
| case SPCI_FEATURES_32: |
| *args = api_spci_features(args->arg1); |
| return true; |
| case SPCI_RX_RELEASE_32: |
| *args = api_spci_rx_release(current(), next); |
| return true; |
| case SPCI_RXTX_MAP_32: |
| *args = api_spci_rxtx_map(ipa_init(args->arg1), |
| ipa_init(args->arg2), args->arg3, |
| current(), next); |
| return true; |
| case SPCI_YIELD_32: |
| api_yield(current(), next); |
| |
| /* SPCI_YIELD always returns SPCI_SUCCESS. */ |
| *args = (struct spci_value){.func = SPCI_SUCCESS_32}; |
| |
| return true; |
| case SPCI_MSG_SEND_32: |
| *args = api_spci_msg_send(spci_msg_send_sender(*args), |
| spci_msg_send_receiver(*args), |
| spci_msg_send_size(*args), |
| spci_msg_send_attributes(*args), |
| current(), next); |
| return true; |
| case SPCI_MSG_WAIT_32: |
| *args = api_spci_msg_recv(true, current(), next); |
| return true; |
| case SPCI_MSG_POLL_32: |
| *args = api_spci_msg_recv(false, current(), next); |
| return true; |
| case SPCI_RUN_32: |
| *args = api_spci_run(spci_vm_id(*args), spci_vcpu_index(*args), |
| current(), next); |
| return true; |
| case SPCI_MEM_DONATE_32: |
| case SPCI_MEM_LEND_32: |
| case SPCI_MEM_SHARE_32: |
| case HF_SPCI_MEM_RELINQUISH: |
| *args = api_spci_mem_send(func, ipa_init(args->arg1), |
| args->arg2, args->arg3, args->arg4, |
| args->arg5, current(), next); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * Set or clear VI bit according to pending interrupts. |
| */ |
| static void update_vi(struct vcpu *next) |
| { |
| if (next == NULL) { |
| /* |
| * Not switching vCPUs, set the bit for the current vCPU |
| * directly in the register. |
| */ |
| struct vcpu *vcpu = current(); |
| |
| sl_lock(&vcpu->lock); |
| set_virtual_interrupt_current( |
| vcpu->interrupts.enabled_and_pending_count > 0); |
| sl_unlock(&vcpu->lock); |
| } else { |
| /* |
| * About to switch vCPUs, set the bit for the vCPU to which we |
| * are switching in the saved copy of the register. |
| */ |
| sl_lock(&next->lock); |
| set_virtual_interrupt( |
| &next->regs, |
| next->interrupts.enabled_and_pending_count > 0); |
| sl_unlock(&next->lock); |
| } |
| } |
| |
| /** |
| * Processes SMC instruction calls. |
| */ |
| static struct vcpu *smc_handler(struct vcpu *vcpu) |
| { |
| struct spci_value args = { |
| .func = vcpu->regs.r[0], |
| .arg1 = vcpu->regs.r[1], |
| .arg2 = vcpu->regs.r[2], |
| .arg3 = vcpu->regs.r[3], |
| .arg4 = vcpu->regs.r[4], |
| .arg5 = vcpu->regs.r[5], |
| .arg6 = vcpu->regs.r[6], |
| .arg7 = vcpu->regs.r[7], |
| }; |
| struct vcpu *next = NULL; |
| |
| if (psci_handler(vcpu, args.func, args.arg1, args.arg2, args.arg3, |
| &vcpu->regs.r[0], &next)) { |
| return next; |
| } |
| |
| if (spci_handler(&args, &next)) { |
| arch_regs_set_retval(&vcpu->regs, args); |
| update_vi(next); |
| return next; |
| } |
| |
| switch (args.func & ~SMCCC_CONVENTION_MASK) { |
| case HF_DEBUG_LOG: |
| vcpu->regs.r[0] = api_debug_log(args.arg1, vcpu); |
| return NULL; |
| } |
| |
| smc_forwarder(vcpu->vm, &args); |
| arch_regs_set_retval(&vcpu->regs, args); |
| return NULL; |
| } |
| |
| /* |
| * Exception vector offsets. |
| * See Arm Architecture Reference Manual Armv8-A, D1.10.2. |
| */ |
| |
| /** |
| * Offset for synchronous exceptions at current EL with SPx. |
| */ |
| #define OFFSET_CURRENT_SPX UINT64_C(0x200) |
| |
| /** |
| * Offset for synchronous exceptions at lower EL using AArch64. |
| */ |
| #define OFFSET_LOWER_EL_64 UINT64_C(0x400) |
| |
| /** |
| * Offset for synchronous exceptions at lower EL using AArch32. |
| */ |
| #define OFFSET_LOWER_EL_32 UINT64_C(0x600) |
| |
| /** |
| * Returns the address for the exception handler at EL1. |
| */ |
| static uintreg_t get_el1_exception_handler_addr(const struct vcpu *vcpu) |
| { |
| uintreg_t base_addr = read_msr(vbar_el1); |
| uintreg_t pe_mode = vcpu->regs.spsr & PSR_PE_MODE_MASK; |
| bool is_arch32 = vcpu->regs.spsr & PSR_ARCH_MODE_32; |
| |
| if (pe_mode == PSR_PE_MODE_EL0T) { |
| if (is_arch32) { |
| base_addr += OFFSET_LOWER_EL_32; |
| } else { |
| base_addr += OFFSET_LOWER_EL_64; |
| } |
| } else { |
| CHECK(!is_arch32); |
| base_addr += OFFSET_CURRENT_SPX; |
| } |
| |
| return base_addr; |
| } |
| |
| /** |
| * Injects an exception with the specified Exception Syndrom Register value into |
| * the EL1. |
| * See Arm Architecture Reference Manual Armv8-A, page D13-2924. |
| * |
| * NOTE: This function assumes that the lazy registers haven't been saved, and |
| * writes to the lazy registers of the CPU directly instead of the vCPU. |
| */ |
| static void inject_el1_exception(struct vcpu *vcpu, uintreg_t esr_el1_value) |
| { |
| uintreg_t handler_address = get_el1_exception_handler_addr(vcpu); |
| |
| /* Update the CPU state to inject the exception. */ |
| write_msr(esr_el1, esr_el1_value); |
| write_msr(elr_el1, vcpu->regs.pc); |
| write_msr(spsr_el1, vcpu->regs.spsr); |
| |
| /* |
| * Mask (disable) interrupts and run in EL1h mode. |
| * EL1h mode is used because by default, taking an exception selects the |
| * stack pointer for the target Exception level. The software can change |
| * that later in the handler if needed. |
| * See Arm Architecture Reference Manual Armv8-A, page D13-2924 |
| */ |
| vcpu->regs.spsr = PSR_D | PSR_A | PSR_I | PSR_F | PSR_PE_MODE_EL1H; |
| |
| /* Transfer control to the exception hander. */ |
| vcpu->regs.pc = handler_address; |
| } |
| |
| /** |
| * Injects a Data Abort exception (same exception level). |
| */ |
| static void inject_el1_data_abort_exception(struct vcpu *vcpu, |
| uintreg_t esr_el2) |
| { |
| /* |
| * ISS encoding remains the same, but the EC is changed to reflect |
| * where the exception came from. |
| * See Arm Architecture Reference Manual Armv8-A, pages D13-2943/2982. |
| */ |
| uintreg_t esr_el1_value = GET_ESR_ISS(esr_el2) | GET_ESR_IL(esr_el2) | |
| (EC_DATA_ABORT_SAME_EL << ESR_EC_OFFSET); |
| |
| dlog_notice("Injecting Data Abort exception into VM%d.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value); |
| } |
| |
| /** |
| * Injects a Data Abort exception (same exception level). |
| */ |
| static void inject_el1_instruction_abort_exception(struct vcpu *vcpu, |
| uintreg_t esr_el2) |
| { |
| /* |
| * ISS encoding remains the same, but the EC is changed to reflect |
| * where the exception came from. |
| * See Arm Architecture Reference Manual Armv8-A, pages D13-2941/2980. |
| */ |
| uintreg_t esr_el1_value = |
| GET_ESR_ISS(esr_el2) | GET_ESR_IL(esr_el2) | |
| (EC_INSTRUCTION_ABORT_SAME_EL << ESR_EC_OFFSET); |
| |
| dlog_notice("Injecting Instruction Abort exception into VM%d.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value); |
| } |
| |
| /** |
| * Injects an exception with an unknown reason into the EL1. |
| */ |
| static void inject_el1_unknown_exception(struct vcpu *vcpu, uintreg_t esr_el2) |
| { |
| uintreg_t esr_el1_value = |
| GET_ESR_IL(esr_el2) | (EC_UNKNOWN << ESR_EC_OFFSET); |
| char *direction_str; |
| |
| direction_str = ISS_IS_READ(esr_el2) ? "read" : "write"; |
| dlog_notice( |
| "Trapped access to system register %s: op0=%d, op1=%d, crn=%d, " |
| "crm=%d, op2=%d, rt=%d.\n", |
| direction_str, GET_ISS_OP0(esr_el2), GET_ISS_OP1(esr_el2), |
| GET_ISS_CRN(esr_el2), GET_ISS_CRM(esr_el2), |
| GET_ISS_OP2(esr_el2), GET_ISS_RT(esr_el2)); |
| |
| dlog_notice("Injecting Unknown Reason exception into VM%d.\n", |
| vcpu->vm->id); |
| |
| inject_el1_exception(vcpu, esr_el1_value); |
| } |
| |
| struct vcpu *hvc_handler(struct vcpu *vcpu) |
| { |
| struct spci_value args = { |
| .func = vcpu->regs.r[0], |
| .arg1 = vcpu->regs.r[1], |
| .arg2 = vcpu->regs.r[2], |
| .arg3 = vcpu->regs.r[3], |
| .arg4 = vcpu->regs.r[4], |
| .arg5 = vcpu->regs.r[5], |
| .arg6 = vcpu->regs.r[6], |
| .arg7 = vcpu->regs.r[7], |
| }; |
| struct vcpu *next = NULL; |
| |
| if (psci_handler(vcpu, args.func, args.arg1, args.arg2, args.arg3, |
| &vcpu->regs.r[0], &next)) { |
| return next; |
| } |
| |
| if (spci_handler(&args, &next)) { |
| arch_regs_set_retval(&vcpu->regs, args); |
| update_vi(next); |
| return next; |
| } |
| |
| switch (args.func) { |
| case HF_VM_GET_COUNT: |
| vcpu->regs.r[0] = api_vm_get_count(); |
| break; |
| |
| case HF_VCPU_GET_COUNT: |
| vcpu->regs.r[0] = api_vcpu_get_count(args.arg1, vcpu); |
| break; |
| |
| case HF_MAILBOX_WRITABLE_GET: |
| vcpu->regs.r[0] = api_mailbox_writable_get(vcpu); |
| break; |
| |
| case HF_MAILBOX_WAITER_GET: |
| vcpu->regs.r[0] = api_mailbox_waiter_get(args.arg1, vcpu); |
| break; |
| |
| case HF_INTERRUPT_ENABLE: |
| vcpu->regs.r[0] = |
| api_interrupt_enable(args.arg1, args.arg2, vcpu); |
| break; |
| |
| case HF_INTERRUPT_GET: |
| vcpu->regs.r[0] = api_interrupt_get(vcpu); |
| break; |
| |
| case HF_INTERRUPT_INJECT: |
| vcpu->regs.r[0] = api_interrupt_inject(args.arg1, args.arg2, |
| args.arg3, vcpu, &next); |
| break; |
| |
| case HF_DEBUG_LOG: |
| vcpu->regs.r[0] = api_debug_log(args.arg1, vcpu); |
| break; |
| |
| default: |
| vcpu->regs.r[0] = SMCCC_ERROR_UNKNOWN; |
| } |
| |
| update_vi(next); |
| |
| return next; |
| } |
| |
| struct vcpu *irq_lower(void) |
| { |
| /* |
| * Switch back to primary VM, interrupts will be handled there. |
| * |
| * If the VM has aborted, this vCPU will be aborted when the scheduler |
| * tries to run it again. This means the interrupt will not be delayed |
| * by the aborted VM. |
| * |
| * TODO: Only switch when the interrupt isn't for the current VM. |
| */ |
| return api_preempt(current()); |
| } |
| |
| struct vcpu *fiq_lower(void) |
| { |
| return irq_lower(); |
| } |
| |
| noreturn struct vcpu *serr_lower(void) |
| { |
| /* |
| * SError exceptions should be isolated and handled by the responsible |
| * VM/exception level. Getting here indicates a bug, that isolation is |
| * not working, or a processor that does not support ARMv8.2-IESB, in |
| * which case Hafnium routes SError exceptions to EL2 (here). |
| */ |
| panic("SError from a lower exception level."); |
| } |
| |
| /** |
| * Initialises a fault info structure. It assumes that an FnV bit exists at |
| * bit offset 10 of the ESR, and that it is only valid when the bottom 6 bits of |
| * the ESR (the fault status code) are 010000; this is the case for both |
| * instruction and data aborts, but not necessarily for other exception reasons. |
| */ |
| static struct vcpu_fault_info fault_info_init(uintreg_t esr, |
| const struct vcpu *vcpu, |
| uint32_t mode) |
| { |
| uint32_t fsc = esr & 0x3f; |
| struct vcpu_fault_info r; |
| |
| r.mode = mode; |
| r.pc = va_init(vcpu->regs.pc); |
| |
| /* |
| * Check the FnV bit, which is only valid if dfsc/ifsc is 010000. It |
| * indicates that we cannot rely on far_el2. |
| */ |
| if (fsc == 0x10 && esr & (1U << 10)) { |
| r.vaddr = va_init(0); |
| r.ipaddr = ipa_init(read_msr(hpfar_el2) << 8); |
| } else { |
| r.vaddr = va_init(read_msr(far_el2)); |
| r.ipaddr = ipa_init((read_msr(hpfar_el2) << 8) | |
| (read_msr(far_el2) & (PAGE_SIZE - 1))); |
| } |
| |
| return r; |
| } |
| |
| struct vcpu *sync_lower_exception(uintreg_t esr) |
| { |
| struct vcpu *vcpu = current(); |
| struct vcpu_fault_info info; |
| struct vcpu *new_vcpu; |
| uintreg_t ec = GET_ESR_EC(esr); |
| |
| switch (ec) { |
| case EC_WFI_WFE: |
| /* Skip the instruction. */ |
| vcpu->regs.pc += GET_NEXT_PC_INC(esr); |
| /* Check TI bit of ISS, 0 = WFI, 1 = WFE. */ |
| if (esr & 1) { |
| /* WFE */ |
| /* |
| * TODO: consider giving the scheduler more context, |
| * somehow. |
| */ |
| api_yield(vcpu, &new_vcpu); |
| return new_vcpu; |
| } |
| /* WFI */ |
| return api_wait_for_interrupt(vcpu); |
| |
| case EC_DATA_ABORT_LOWER_EL: |
| info = fault_info_init( |
| esr, vcpu, (esr & (1U << 6)) ? MM_MODE_W : MM_MODE_R); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| /* Inform the EL1 of the data abort. */ |
| inject_el1_data_abort_exception(vcpu, esr); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| |
| case EC_INSTRUCTION_ABORT_LOWER_EL: |
| info = fault_info_init(esr, vcpu, MM_MODE_X); |
| if (vcpu_handle_page_fault(vcpu, &info)) { |
| return NULL; |
| } |
| /* Inform the EL1 of the instruction abort. */ |
| inject_el1_instruction_abort_exception(vcpu, esr); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| |
| case EC_HVC: |
| return hvc_handler(vcpu); |
| |
| case EC_SMC: { |
| uintreg_t smc_pc = vcpu->regs.pc; |
| struct vcpu *next = smc_handler(vcpu); |
| |
| /* Skip the SMC instruction. */ |
| vcpu->regs.pc = smc_pc + GET_NEXT_PC_INC(esr); |
| |
| return next; |
| } |
| |
| case EC_MSR: |
| /* |
| * NOTE: This should never be reached because it goes through a |
| * separate path handled by handle_system_register_access(). |
| */ |
| panic("Handled by handle_system_register_access()."); |
| |
| default: |
| dlog_notice( |
| "Unknown lower sync exception pc=%#x, esr=%#x, " |
| "ec=%#x\n", |
| vcpu->regs.pc, esr, ec); |
| break; |
| } |
| |
| /* |
| * The exception wasn't handled. Inject to the VM to give it chance to |
| * handle as an unknown exception. |
| */ |
| inject_el1_unknown_exception(vcpu, esr); |
| |
| /* Schedule the same VM to continue running. */ |
| return NULL; |
| } |
| |
| /** |
| * Handles EC = 011000, MSR, MRS instruction traps. |
| * Returns non-null ONLY if the access failed and the vCPU is changing. |
| */ |
| void handle_system_register_access(uintreg_t esr_el2) |
| { |
| struct vcpu *vcpu = current(); |
| spci_vm_id_t vm_id = vcpu->vm->id; |
| uintreg_t ec = GET_ESR_EC(esr_el2); |
| |
| CHECK(ec == EC_MSR); |
| /* |
| * Handle accesses to debug and performance monitor registers. |
| * Inject an exception for unhandled/unsupported registers. |
| */ |
| if (debug_el1_is_register_access(esr_el2)) { |
| if (!debug_el1_process_access(vcpu, vm_id, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else if (perfmon_is_register_access(esr_el2)) { |
| if (!perfmon_process_access(vcpu, vm_id, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else if (feature_id_is_register_access(esr_el2)) { |
| if (!feature_id_process_access(vcpu, esr_el2)) { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| } else { |
| inject_el1_unknown_exception(vcpu, esr_el2); |
| return; |
| } |
| |
| /* Instruction was fulfilled. Skip it and run the next one. */ |
| vcpu->regs.pc += GET_NEXT_PC_INC(esr_el2); |
| } |