blob: 3aa680079033cb49dbbe5f9eda43f97f4a5c98d1 [file] [log] [blame]
/*
* Copyright 2018 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <stdalign.h>
#include <stdint.h>
#include "hf/mm.h"
#include "hf/std.h"
#include "vmapi/hf/call.h"
#include "hftest.h"
static alignas(PAGE_SIZE) uint8_t send_page[PAGE_SIZE];
static alignas(PAGE_SIZE) uint8_t recv_page[PAGE_SIZE];
static_assert(sizeof(send_page) == PAGE_SIZE, "Send page is not a page.");
static_assert(sizeof(recv_page) == PAGE_SIZE, "Recv page is not a page.");
static hf_ipaddr_t send_page_addr = (hf_ipaddr_t)send_page;
static hf_ipaddr_t recv_page_addr = (hf_ipaddr_t)recv_page;
/* Keep macro alignment */
/* clang-format off */
#define RELAY_A_VM_ID 1
#define RELAY_B_VM_ID 2
#define ECHO_VM_ID 3
/* clang-format on */
/**
* Reverses the order of the elements in the given array.
*/
void reverse(char *s, size_t len)
{
size_t i;
for (i = 0; i < len / 2; i++) {
char t = s[i];
s[i] = s[len - 1 - i];
s[len - 1 - i] = t;
}
}
/**
* Finds the next lexicographic permutation of the given array, if there is one.
*/
void next_permutation(char *s, size_t len)
{
size_t i, j;
for (i = len - 2; i < len; i--) {
const char t = s[i];
if (t >= s[i + 1]) {
continue;
}
for (j = len - 1; t >= s[j]; j--) {
}
s[i] = s[j];
s[j] = t;
reverse(s + i + 1, len - i - 1);
return;
}
}
/**
* Confirm there are 3 secondary VMs as well as this primary VM.
*/
TEST(hf_vm_get_count, three_secondary_vms)
{
EXPECT_EQ(hf_vm_get_count(), 4);
}
/**
* Confirm there that secondary VM has 1 VCPU.
*/
TEST(hf_vcpu_get_count, secondary_has_one_vcpu)
{
EXPECT_EQ(hf_vcpu_get_count(1), 1);
}
/**
* Confirm it is an error to query how many VCPUs are assigned to a nonexistent
* secondary VM.
*/
TEST(hf_vcpu_get_count, large_invalid_vm_index)
{
EXPECT_EQ(hf_vcpu_get_count(0xffffffff), -1);
}
/**
* The primary can't be run by the hypervisor.
*/
TEST(hf_vcpu_run, cannot_run_primary)
{
struct hf_vcpu_run_return res = hf_vcpu_run(HF_PRIMARY_VM_ID, 0);
EXPECT_EQ(res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
}
/**
* Can only run a VM that exists.
*/
TEST(hf_vcpu_run, cannot_run_absent_secondary)
{
struct hf_vcpu_run_return res = hf_vcpu_run(1234, 0);
EXPECT_EQ(res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
}
/**
* Can only run a vcpu that exists.
*/
TEST(hf_vcpu_run, cannot_run_absent_vcpu)
{
struct hf_vcpu_run_return res = hf_vcpu_run(ECHO_VM_ID, 1234);
EXPECT_EQ(res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
}
/**
* The configured send/receive addresses can't be unaligned.
*/
TEST(hf_vm_configure, fails_with_unaligned_pointer)
{
uint8_t maybe_aligned[2];
hf_ipaddr_t unaligned_addr = (hf_ipaddr_t)&maybe_aligned[1];
hf_ipaddr_t aligned_addr = (hf_ipaddr_t)send_page;
/* Check the the address is unaligned. */
ASSERT_EQ(unaligned_addr & 1, 1);
EXPECT_EQ(hf_vm_configure(aligned_addr, unaligned_addr), -1);
EXPECT_EQ(hf_vm_configure(unaligned_addr, aligned_addr), -1);
EXPECT_EQ(hf_vm_configure(unaligned_addr, unaligned_addr), -1);
}
/**
* The configured send/receive addresses can't be the same page.
*/
TEST(hf_vm_configure, fails_with_same_page)
{
EXPECT_EQ(hf_vm_configure(send_page_addr, send_page_addr), -1);
EXPECT_EQ(hf_vm_configure(recv_page_addr, recv_page_addr), -1);
}
/**
* The configuration of the send/receive addresses can only happen once.
*/
TEST(hf_vm_configure, fails_if_already_succeeded)
{
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), 0);
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), -1);
}
/**
* The configuration of the send/receive address is successful with valid
* arguments.
*/
TEST(hf_vm_configure, succeeds)
{
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), 0);
}
/**
* The primary receives messages from hf_vcpu_run().
*/
TEST(hf_mailbox_receive, cannot_receive_from_primary_blocking)
{
struct hf_mailbox_receive_return res = hf_mailbox_receive(true);
EXPECT_EQ(res.vm_id, HF_INVALID_VM_ID);
EXPECT_EQ(res.size, 0);
}
/**
* The primary receives messages from hf_vcpu_run().
*/
TEST(hf_mailbox_receive, cannot_receive_from_primary_non_blocking)
{
struct hf_mailbox_receive_return res = hf_mailbox_receive(false);
EXPECT_EQ(res.vm_id, HF_INVALID_VM_ID);
EXPECT_EQ(res.size, 0);
}
/**
* Send and receive the same message from the echo VM.
*/
TEST(mailbox, echo)
{
const char message[] = "Echo this back to me!";
struct hf_vcpu_run_return run_res;
/* Configure mailbox pages. */
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), 0);
run_res = hf_vcpu_run(ECHO_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
/* Set the message, echo it and check it didn't change. */
memcpy(send_page, message, sizeof(message));
EXPECT_EQ(hf_mailbox_send(ECHO_VM_ID, sizeof(message)), 0);
run_res = hf_vcpu_run(ECHO_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_MESSAGE);
EXPECT_EQ(run_res.message.size, sizeof(message));
EXPECT_EQ(memcmp(recv_page, message, sizeof(message)), 0);
EXPECT_EQ(hf_mailbox_clear(), 0);
}
/**
* Repeatedly send a message and receive it back from the echo VM.
*/
TEST(mailbox, repeated_echo)
{
char message[] = "Echo this back to me!";
struct hf_vcpu_run_return run_res;
uint8_t i;
/* Configure mailbox pages. */
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), 0);
for (i = 0; i < 100; i++) {
/* Run secondary until it reaches the wait for messages. */
run_res = hf_vcpu_run(ECHO_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
/* Set the message, echo it and check it didn't change. */
next_permutation(message, sizeof(message) - 1);
memcpy(send_page, message, sizeof(message));
EXPECT_EQ(hf_mailbox_send(ECHO_VM_ID, sizeof(message)), 0);
run_res = hf_vcpu_run(ECHO_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_MESSAGE);
EXPECT_EQ(run_res.message.size, sizeof(message));
EXPECT_EQ(memcmp(recv_page, message, sizeof(message)), 0);
EXPECT_EQ(hf_mailbox_clear(), 0);
}
}
/**
* Send a message to relay_a which will forward it to relay_b where it will be
* sent back here.
*/
TEST(mailbox, relay)
{
const char message[] = "Send this round the relay!";
struct hf_vcpu_run_return run_res;
/* Configure mailbox pages. */
EXPECT_EQ(hf_vm_configure(send_page_addr, recv_page_addr), 0);
run_res = hf_vcpu_run(RELAY_A_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
run_res = hf_vcpu_run(RELAY_B_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_WAIT_FOR_INTERRUPT);
/*
* Send the message to relay_a which is then sent to relay_b before
* checking that relay_b send the message back here.
*/
memcpy(send_page, message, sizeof(message));
EXPECT_EQ(hf_mailbox_send(RELAY_A_VM_ID, sizeof(message)), 0);
run_res = hf_vcpu_run(RELAY_A_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_WAKE_UP);
EXPECT_EQ(run_res.wake_up.vm_id, RELAY_B_VM_ID);
EXPECT_EQ(run_res.wake_up.vcpu, 0);
run_res = hf_vcpu_run(RELAY_B_VM_ID, 0);
EXPECT_EQ(run_res.code, HF_VCPU_RUN_MESSAGE);
EXPECT_EQ(run_res.message.size, sizeof(message));
EXPECT_EQ(memcmp(recv_page, message, sizeof(message)), 0);
EXPECT_EQ(hf_mailbox_clear(), 0);
}