blob: fb30f575223c4a571e333ae4479fcbc652f59dd6 [file] [log] [blame]
/*
* Copyright 2018 The Hafnium Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
extern "C" {
#include "vmapi/hf/abi.h"
#include "vmapi/hf/spci.h"
}
#include <gmock/gmock.h>
namespace
{
using ::testing::Eq;
/**
* Simulate an uninitialized hf_vcpu_run_return so it can be detected if any
* uninitialized fields make their way into the encoded form which would
* indicate a data leak.
*/
struct hf_vcpu_run_return dirty_vcpu_run_return()
{
struct hf_vcpu_run_return res;
memset(&res, 0xc5, sizeof(res));
return res;
}
/**
* Simulate an uninitialized spci_value so it can be detected if any
* uninitialized fields make their way into the encoded form which would
* indicate a data leak.
*/
struct spci_value dirty_spci_value()
{
struct spci_value res;
memset(&res, 0xc5, sizeof(res));
return res;
}
bool operator==(const spci_value a, const spci_value b)
{
return a.func == b.func && a.arg1 == b.arg1 && a.arg2 == b.arg2 &&
a.arg3 == b.arg3 && a.arg4 == b.arg4 && a.arg5 == b.arg5 &&
a.arg6 == b.arg6 && a.arg7 == b.arg7;
}
MATCHER_P(SpciEq, expected, "")
{
return arg == expected;
}
/**
* Encode a preempted response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_preempted)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_PREEMPTED;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_INTERRUPT_32,
.arg1 = 0x11112222}));
}
/**
* Decode a preempted response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_preempted)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_INTERRUPT_32;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_PREEMPTED));
}
/**
* Encode a yield response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_yield)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_YIELD;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_YIELD_32,
.arg1 = 0x22221111}));
}
/**
* Decode a yield response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_yield)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_YIELD_32;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_YIELD));
}
/**
* Encode wait-for-interrupt response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_interrupt)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_INTERRUPT;
res.sleep.ns = HF_SLEEP_INDEFINITE;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){
.func = HF_SPCI_RUN_WAIT_FOR_INTERRUPT,
.arg1 = 0x22221111,
.arg2 = SPCI_SLEEP_INDEFINITE}));
}
/**
* Encoding wait-for-interrupt response with large sleep duration won't drop the
* top octet.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_interrupt_sleep_long)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_INTERRUPT;
res.sleep.ns = 0xcc22888888888888;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){
.func = HF_SPCI_RUN_WAIT_FOR_INTERRUPT,
.arg1 = 0x22221111,
.arg2 = 0xcc22888888888888}));
}
/**
* Encoding wait-for-interrupt response with zero sleep duration will become
* non-zero for SPCI compatibility.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_interrupt_sleep_zero)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_INTERRUPT;
res.sleep.ns = 0;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){
.func = HF_SPCI_RUN_WAIT_FOR_INTERRUPT,
.arg1 = 0x22221111,
.arg2 = 1}));
}
/**
* Decode a wait-for-interrupt response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_wait_for_interrupt)
{
struct spci_value v = dirty_spci_value();
v.func = HF_SPCI_RUN_WAIT_FOR_INTERRUPT;
v.arg2 = 0x1234abcdbadb01;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_WAIT_FOR_INTERRUPT));
EXPECT_THAT(res.sleep.ns, Eq(0x1234abcdbadb01));
}
/**
* Decode a wait-for-interrupt response waiting indefinitely.
*/
TEST(abi, hf_vcpu_run_return_decode_wait_for_interrupt_indefinite)
{
struct spci_value v = dirty_spci_value();
v.func = HF_SPCI_RUN_WAIT_FOR_INTERRUPT;
v.arg2 = SPCI_SLEEP_INDEFINITE;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_WAIT_FOR_INTERRUPT));
EXPECT_THAT(res.sleep.ns, Eq(HF_SLEEP_INDEFINITE));
}
/**
* Encode wait-for-message response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_message)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_MESSAGE;
res.sleep.ns = HF_SLEEP_INDEFINITE;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_MSG_WAIT_32,
.arg1 = 0x22221111,
.arg2 = SPCI_SLEEP_INDEFINITE}));
}
/**
* Encoding wait-for-message response with large sleep duration won't drop
* the top octet.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_message_sleep_long)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_MESSAGE;
res.sleep.ns = 0xaa99777777777777;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_MSG_WAIT_32,
.arg1 = 0x22221111,
.arg2 = 0xaa99777777777777}));
}
/**
* Encoding wait-for-message response with zero sleep duration will become
* non-zero for SPCI compatibility.
*/
TEST(abi, hf_vcpu_run_return_encode_wait_for_message_sleep_zero)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAIT_FOR_MESSAGE;
res.sleep.ns = 0;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_MSG_WAIT_32,
.arg1 = 0x22221111,
.arg2 = 1}));
}
/**
* Decode a wait-for-message response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_wait_for_message)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_MSG_WAIT_32;
v.arg2 = 0x12347654badb01;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_WAIT_FOR_MESSAGE));
EXPECT_THAT(res.sleep.ns, Eq(0x12347654badb01));
}
/**
* Decode a wait-for-message response waiting indefinitely.
*/
TEST(abi, hf_vcpu_run_return_decode_wait_for_message_indefinite)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_MSG_WAIT_32;
v.arg2 = SPCI_SLEEP_INDEFINITE;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_WAIT_FOR_MESSAGE));
EXPECT_THAT(res.sleep.ns, Eq(HF_SLEEP_INDEFINITE));
}
/**
* Encode wake up response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_wake_up)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_WAKE_UP;
res.wake_up.vm_id = 0x1234;
res.wake_up.vcpu = 0xabcd;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = HF_SPCI_RUN_WAKE_UP,
.arg1 = 0xabcd1234}));
}
/**
* Decode a wake up response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_wake_up)
{
struct spci_value v = dirty_spci_value();
v.func = HF_SPCI_RUN_WAKE_UP;
v.arg1 = 0x88888888f00dbeef;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_WAKE_UP));
EXPECT_THAT(res.wake_up.vm_id, Eq(0xbeef));
EXPECT_THAT(res.wake_up.vcpu, Eq(0xf00d));
}
/**
* Encode message response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_message)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_MESSAGE;
res.message.vm_id = 0xf007;
res.message.size = 0xcafe1971;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_MSG_SEND_32,
.arg1 = 0x1111f007,
.arg3 = 0xcafe1971}));
}
/**
* Decode a wake up response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_message)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_MSG_SEND_32;
v.arg1 = 0x1111222233339162;
v.arg3 = 0x11235813;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_MESSAGE));
EXPECT_THAT(res.message.vm_id, Eq(0x9162));
EXPECT_THAT(res.message.size, Eq(0x11235813));
}
/**
* Encode a 'notify waiters' response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_notify_waiters)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_NOTIFY_WAITERS;
EXPECT_THAT(hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_RX_RELEASE_32}));
}
/**
* Decode a 'notify waiters' response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_notify_waiters)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_RX_RELEASE_32;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_NOTIFY_WAITERS));
}
/**
* Encode an aborted response without leaking.
*/
TEST(abi, hf_vcpu_run_return_encode_aborted)
{
struct hf_vcpu_run_return res = dirty_vcpu_run_return();
res.code = HF_VCPU_RUN_ABORTED;
EXPECT_THAT(
hf_vcpu_run_return_encode(res, 0x1111, 0x2222),
SpciEq((struct spci_value){.func = SPCI_ERROR_32,
.arg2 = (uint64_t)SPCI_ABORTED}));
}
/**
* Decode an aborted response ignoring the irrelevant bits.
*/
TEST(abi, hf_vcpu_run_return_decode_aborted)
{
struct spci_value v = dirty_spci_value();
v.func = SPCI_ERROR_32;
v.arg2 = SPCI_ABORTED;
struct hf_vcpu_run_return res = hf_vcpu_run_return_decode(v);
EXPECT_THAT(res.code, Eq(HF_VCPU_RUN_ABORTED));
}
} /* namespace */