blob: c31ad0f47114144e9562728df319b2c8b534ea8b [file] [log] [blame] [edit]
/*
* Copyright 2018 The Hafnium Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hf/cpu.h"
#include <stdalign.h>
#include "hf/api.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "vmapi/hf/call.h"
#define STACK_SIZE PAGE_SIZE
/**
* The stacks to be used by the CPUs.
*
* Align to page boundaries to ensure that cache lines are not shared between a
* CPU's stack and data that can be accessed from other CPUs. If this did
* happen, there may be coherency problems when the stack is being used before
* caching is enabled.
*/
alignas(PAGE_SIZE) static char callstacks[MAX_CPUS][STACK_SIZE];
/* NOLINTNEXTLINE(misc-redundant-expression) */
static_assert((STACK_SIZE % PAGE_SIZE) == 0, "Keep each stack page aligned.");
static_assert((PAGE_SIZE % STACK_ALIGN) == 0,
"Page alignment is too weak for the stack.");
/**
* Internal buffer used to store FF-A messages from a VM Tx. Its usage prevents
* TOCTOU issues while Hafnium performs actions on information that would
* otherwise be re-writable by the VM.
*
* Each buffer is owned by a single CPU. The buffer can only be used for
* ffa_msg_send. The information stored in the buffer is only valid during the
* ffa_msg_send request is performed.
*/
alignas(PAGE_SIZE) static uint8_t cpu_message_buffer[MAX_CPUS][PAGE_SIZE];
uint8_t *cpu_get_buffer(struct cpu *c)
{
size_t cpu_indx = cpu_index(c);
CHECK(cpu_indx < MAX_CPUS);
return cpu_message_buffer[cpu_indx];
}
uint32_t cpu_get_buffer_size(struct cpu *c)
{
size_t cpu_indx = cpu_index(c);
CHECK(cpu_indx < MAX_CPUS);
return sizeof(cpu_message_buffer[cpu_indx]);
}
/* State of all supported CPUs. The stack of the first one is initialized. */
struct cpu cpus[MAX_CPUS] = {
{
.is_on = 1,
.stack_bottom = &callstacks[0][STACK_SIZE],
},
};
static uint32_t cpu_count = 1;
void cpu_module_init(const cpu_id_t *cpu_ids, size_t count)
{
uint32_t i;
uint32_t j;
cpu_id_t boot_cpu_id = cpus[0].id;
bool found_boot_cpu = false;
cpu_count = count;
/*
* Initialize CPUs with the IDs from the configuration passed in. The
* CPUs after the boot CPU are initialized in reverse order. The boot
* CPU is initialized when it is found or in place of the last CPU if it
* is not found.
*/
j = cpu_count;
for (i = 0; i < cpu_count; ++i) {
struct cpu *c;
cpu_id_t id = cpu_ids[i];
if (found_boot_cpu || id != boot_cpu_id) {
--j;
c = &cpus[j];
c->stack_bottom = &callstacks[j][STACK_SIZE];
} else {
found_boot_cpu = true;
c = &cpus[0];
CHECK(c->stack_bottom == &callstacks[0][STACK_SIZE]);
}
sl_init(&c->lock);
c->id = id;
}
if (!found_boot_cpu) {
/* Boot CPU was initialized but with wrong ID. */
dlog_warning("Boot CPU's ID not found in config.\n");
cpus[0].id = boot_cpu_id;
}
}
size_t cpu_index(struct cpu *c)
{
return c - cpus;
}
/**
* Turns CPU on and returns the previous state.
*/
bool cpu_on(struct cpu *c, ipaddr_t entry, uintreg_t arg)
{
bool prev;
sl_lock(&c->lock);
prev = c->is_on;
c->is_on = true;
sl_unlock(&c->lock);
if (!prev) {
struct vm *vm = vm_find(HF_PRIMARY_VM_ID);
struct vcpu *vcpu = vm_get_vcpu(vm, cpu_index(c));
struct vcpu_locked vcpu_locked;
vcpu_locked = vcpu_lock(vcpu);
vcpu_on(vcpu_locked, entry, arg);
vcpu_unlock(&vcpu_locked);
}
return prev;
}
/**
* Prepares the CPU for turning itself off.
*/
void cpu_off(struct cpu *c)
{
sl_lock(&c->lock);
c->is_on = false;
sl_unlock(&c->lock);
}
/**
* Searches for a CPU based on its ID.
*/
struct cpu *cpu_find(cpu_id_t id)
{
size_t i;
for (i = 0; i < cpu_count; i++) {
if (cpus[i].id == id) {
return &cpus[i];
}
}
return NULL;
}