blob: 89c372de21c42071abc11f989ac1e1140f3ae82c [file] [log] [blame] [edit]
/*
* Copyright 2019 The Hafnium Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "hf/ffa_memory.h"
#include "hf/arch/tee.h"
#include "hf/api.h"
#include "hf/check.h"
#include "hf/dlog.h"
#include "hf/ffa_internal.h"
#include "hf/mpool.h"
#include "hf/std.h"
#include "hf/vm.h"
/** The maximum number of recipients a memory region may be sent to. */
#define MAX_MEM_SHARE_RECIPIENTS 1
/**
* The maximum number of memory sharing handles which may be active at once. A
* DONATE handle is active from when it is sent to when it is retrieved; a SHARE
* or LEND handle is active from when it is sent to when it is reclaimed.
*/
#define MAX_MEM_SHARES 100
/**
* The maximum number of fragments into which a memory sharing message may be
* broken.
*/
#define MAX_FRAGMENTS 20
static_assert(sizeof(struct ffa_memory_region_constituent) % 16 == 0,
"struct ffa_memory_region_constituent must be a multiple of 16 "
"bytes long.");
static_assert(sizeof(struct ffa_composite_memory_region) % 16 == 0,
"struct ffa_composite_memory_region must be a multiple of 16 "
"bytes long.");
static_assert(sizeof(struct ffa_memory_region_attributes) == 4,
"struct ffa_memory_region_attributes must be 4bytes long.");
static_assert(sizeof(struct ffa_memory_access) % 16 == 0,
"struct ffa_memory_access must be a multiple of 16 bytes long.");
static_assert(sizeof(struct ffa_memory_region) % 16 == 0,
"struct ffa_memory_region must be a multiple of 16 bytes long.");
static_assert(sizeof(struct ffa_mem_relinquish) % 16 == 0,
"struct ffa_mem_relinquish must be a multiple of 16 "
"bytes long.");
struct ffa_memory_share_state {
ffa_memory_handle_t handle;
/**
* The memory region being shared, or NULL if this share state is
* unallocated.
*/
struct ffa_memory_region *memory_region;
struct ffa_memory_region_constituent *fragments[MAX_FRAGMENTS];
/** The number of constituents in each fragment. */
uint32_t fragment_constituent_counts[MAX_FRAGMENTS];
/**
* The number of valid elements in the `fragments` and
* `fragment_constituent_counts` arrays.
*/
uint32_t fragment_count;
/**
* The FF-A function used for sharing the memory. Must be one of
* FFA_MEM_DONATE_32, FFA_MEM_LEND_32 or FFA_MEM_SHARE_32 if the
* share state is allocated, or 0.
*/
uint32_t share_func;
/**
* True if all the fragments of this sharing request have been sent and
* Hafnium has updated the sender page table accordingly.
*/
bool sending_complete;
/**
* How many fragments of the memory region each recipient has retrieved
* so far. The order of this array matches the order of the endpoint
* memory access descriptors in the memory region descriptor. Any
* entries beyond the receiver_count will always be 0.
*/
uint32_t retrieved_fragment_count[MAX_MEM_SHARE_RECIPIENTS];
};
/**
* Encapsulates the set of share states while the `share_states_lock` is held.
*/
struct share_states_locked {
struct ffa_memory_share_state *share_states;
};
/**
* All access to members of a `struct ffa_memory_share_state` must be guarded
* by this lock.
*/
static struct spinlock share_states_lock_instance = SPINLOCK_INIT;
static struct ffa_memory_share_state share_states[MAX_MEM_SHARES];
/**
* Buffer for retrieving memory region information from the TEE for when a
* region is reclaimed by a VM. Access to this buffer must be guarded by the VM
* lock of the TEE VM.
*/
alignas(PAGE_SIZE) static uint8_t
tee_retrieve_buffer[HF_MAILBOX_SIZE * MAX_FRAGMENTS];
/**
* Initialises the next available `struct ffa_memory_share_state` and sets
* `share_state_ret` to a pointer to it. If `handle` is
* `FFA_MEMORY_HANDLE_INVALID` then allocates an appropriate handle, otherwise
* uses the provided handle which is assumed to be globally unique.
*
* Returns true on success or false if none are available.
*/
static bool allocate_share_state(
struct share_states_locked share_states, uint32_t share_func,
struct ffa_memory_region *memory_region, uint32_t fragment_length,
ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret)
{
uint64_t i;
CHECK(share_states.share_states != NULL);
CHECK(memory_region != NULL);
for (i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states.share_states[i].share_func == 0) {
uint32_t j;
struct ffa_memory_share_state *allocated_state =
&share_states.share_states[i];
struct ffa_composite_memory_region *composite =
ffa_memory_region_get_composite(memory_region,
0);
if (handle == FFA_MEMORY_HANDLE_INVALID) {
allocated_state->handle =
i |
FFA_MEMORY_HANDLE_ALLOCATOR_HYPERVISOR;
} else {
allocated_state->handle = handle;
}
allocated_state->share_func = share_func;
allocated_state->memory_region = memory_region;
allocated_state->fragment_count = 1;
allocated_state->fragments[0] = composite->constituents;
allocated_state->fragment_constituent_counts[0] =
(fragment_length -
ffa_composite_constituent_offset(memory_region,
0)) /
sizeof(struct ffa_memory_region_constituent);
allocated_state->sending_complete = false;
for (j = 0; j < MAX_MEM_SHARE_RECIPIENTS; ++j) {
allocated_state->retrieved_fragment_count[j] =
0;
}
if (share_state_ret != NULL) {
*share_state_ret = allocated_state;
}
return true;
}
}
return false;
}
/** Locks the share states lock. */
struct share_states_locked share_states_lock(void)
{
sl_lock(&share_states_lock_instance);
return (struct share_states_locked){.share_states = share_states};
}
/** Unlocks the share states lock. */
static void share_states_unlock(struct share_states_locked *share_states)
{
CHECK(share_states->share_states != NULL);
share_states->share_states = NULL;
sl_unlock(&share_states_lock_instance);
}
/**
* If the given handle is a valid handle for an allocated share state then
* initialises `share_state_ret` to point to the share state and returns true.
* Otherwise returns false.
*/
static bool get_share_state(struct share_states_locked share_states,
ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret)
{
struct ffa_memory_share_state *share_state;
uint32_t index;
CHECK(share_states.share_states != NULL);
CHECK(share_state_ret != NULL);
/*
* First look for a share_state allocated by us, in which case the
* handle is based on the index.
*/
if ((handle & FFA_MEMORY_HANDLE_ALLOCATOR_MASK) ==
FFA_MEMORY_HANDLE_ALLOCATOR_HYPERVISOR) {
index = handle & ~FFA_MEMORY_HANDLE_ALLOCATOR_MASK;
if (index < MAX_MEM_SHARES) {
share_state = &share_states.share_states[index];
if (share_state->share_func != 0) {
*share_state_ret = share_state;
return true;
}
}
}
/* Fall back to a linear scan. */
for (index = 0; index < MAX_MEM_SHARES; ++index) {
share_state = &share_states.share_states[index];
if (share_state->handle == handle &&
share_state->share_func != 0) {
*share_state_ret = share_state;
return true;
}
}
return false;
}
/** Marks a share state as unallocated. */
static void share_state_free(struct share_states_locked share_states,
struct ffa_memory_share_state *share_state,
struct mpool *page_pool)
{
uint32_t i;
CHECK(share_states.share_states != NULL);
share_state->share_func = 0;
share_state->sending_complete = false;
mpool_free(page_pool, share_state->memory_region);
/*
* First fragment is part of the same page as the `memory_region`, so it
* doesn't need to be freed separately.
*/
share_state->fragments[0] = NULL;
share_state->fragment_constituent_counts[0] = 0;
for (i = 1; i < share_state->fragment_count; ++i) {
mpool_free(page_pool, share_state->fragments[i]);
share_state->fragments[i] = NULL;
share_state->fragment_constituent_counts[i] = 0;
}
share_state->fragment_count = 0;
share_state->memory_region = NULL;
}
/** Checks whether the given share state has been fully sent. */
static bool share_state_sending_complete(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
struct ffa_composite_memory_region *composite;
uint32_t expected_constituent_count;
uint32_t fragment_constituent_count_total = 0;
uint32_t i;
/* Lock must be held. */
CHECK(share_states.share_states != NULL);
/*
* Share state must already be valid, or it's not possible to get hold
* of it.
*/
CHECK(share_state->memory_region != NULL &&
share_state->share_func != 0);
composite =
ffa_memory_region_get_composite(share_state->memory_region, 0);
expected_constituent_count = composite->constituent_count;
for (i = 0; i < share_state->fragment_count; ++i) {
fragment_constituent_count_total +=
share_state->fragment_constituent_counts[i];
}
dlog_verbose(
"Checking completion: constituent count %d/%d from %d "
"fragments.\n",
fragment_constituent_count_total, expected_constituent_count,
share_state->fragment_count);
return fragment_constituent_count_total == expected_constituent_count;
}
/**
* Calculates the offset of the next fragment expected for the given share
* state.
*/
static uint32_t share_state_next_fragment_offset(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state)
{
uint32_t next_fragment_offset;
uint32_t i;
/* Lock must be held. */
CHECK(share_states.share_states != NULL);
next_fragment_offset =
ffa_composite_constituent_offset(share_state->memory_region, 0);
for (i = 0; i < share_state->fragment_count; ++i) {
next_fragment_offset +=
share_state->fragment_constituent_counts[i] *
sizeof(struct ffa_memory_region_constituent);
}
return next_fragment_offset;
}
static void dump_memory_region(struct ffa_memory_region *memory_region)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("from VM %d, attributes %#x, flags %#x, handle %#x, tag %d, to %d "
"recipients [",
memory_region->sender, memory_region->attributes,
memory_region->flags, memory_region->handle, memory_region->tag,
memory_region->receiver_count);
for (i = 0; i < memory_region->receiver_count; ++i) {
if (i != 0) {
dlog(", ");
}
dlog("VM %d: %#x (offset %d)",
memory_region->receivers[i].receiver_permissions.receiver,
memory_region->receivers[i]
.receiver_permissions.permissions,
memory_region->receivers[i]
.composite_memory_region_offset);
}
dlog("]");
}
static void dump_share_states(void)
{
uint32_t i;
if (LOG_LEVEL < LOG_LEVEL_VERBOSE) {
return;
}
dlog("Current share states:\n");
sl_lock(&share_states_lock_instance);
for (i = 0; i < MAX_MEM_SHARES; ++i) {
if (share_states[i].share_func != 0) {
dlog("%#x: ", share_states[i].handle);
switch (share_states[i].share_func) {
case FFA_MEM_SHARE_32:
dlog("SHARE");
break;
case FFA_MEM_LEND_32:
dlog("LEND");
break;
case FFA_MEM_DONATE_32:
dlog("DONATE");
break;
default:
dlog("invalid share_func %#x",
share_states[i].share_func);
}
dlog(" (");
dump_memory_region(share_states[i].memory_region);
if (share_states[i].sending_complete) {
dlog("): fully sent");
} else {
dlog("): partially sent");
}
dlog(" with %d fragments, %d retrieved\n",
share_states[i].fragment_count,
share_states[i].retrieved_fragment_count[0]);
break;
}
}
sl_unlock(&share_states_lock_instance);
}
/* TODO: Add device attributes: GRE, cacheability, shareability. */
static inline uint32_t ffa_memory_permissions_to_mode(
ffa_memory_access_permissions_t permissions)
{
uint32_t mode = 0;
switch (ffa_get_data_access_attr(permissions)) {
case FFA_DATA_ACCESS_RO:
mode = MM_MODE_R;
break;
case FFA_DATA_ACCESS_RW:
case FFA_DATA_ACCESS_NOT_SPECIFIED:
mode = MM_MODE_R | MM_MODE_W;
break;
case FFA_DATA_ACCESS_RESERVED:
panic("Tried to convert FFA_DATA_ACCESS_RESERVED.");
}
switch (ffa_get_instruction_access_attr(permissions)) {
case FFA_INSTRUCTION_ACCESS_NX:
break;
case FFA_INSTRUCTION_ACCESS_X:
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
mode |= MM_MODE_X;
break;
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Tried to convert FFA_INSTRUCTION_ACCESS_RESVERVED.");
}
return mode;
}
/**
* Get the current mode in the stage-2 page table of the given vm of all the
* pages in the given constituents, if they all have the same mode, or return
* an appropriate FF-A error if not.
*/
static struct ffa_value constituents_get_mode(
struct vm_locked vm, uint32_t *orig_mode,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count)
{
uint32_t i;
uint32_t j;
if (fragment_count == 0 || fragment_constituent_counts[0] == 0) {
/*
* Fail if there are no constituents. Otherwise we would get an
* uninitialised *orig_mode.
*/
return ffa_error(FFA_INVALID_PARAMETERS);
}
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
ipaddr_t begin = ipa_init(fragments[i][j].address);
size_t size = fragments[i][j].page_count * PAGE_SIZE;
ipaddr_t end = ipa_add(begin, size);
uint32_t current_mode;
/* Fail if addresses are not page-aligned. */
if (!is_aligned(ipa_addr(begin), PAGE_SIZE) ||
!is_aligned(ipa_addr(end), PAGE_SIZE)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Ensure that this constituent memory range is all
* mapped with the same mode.
*/
if (!mm_vm_get_mode(&vm.vm->ptable, begin, end,
&current_mode)) {
return ffa_error(FFA_DENIED);
}
/*
* Ensure that all constituents are mapped with the same
* mode.
*/
if (i == 0) {
*orig_mode = current_mode;
} else if (current_mode != *orig_mode) {
dlog_verbose(
"Expected mode %#x but was %#x for %d "
"pages at %#x.\n",
*orig_mode, current_mode,
fragments[i][j].page_count,
ipa_addr(begin));
return ffa_error(FFA_DENIED);
}
}
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the sending VM.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <from> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
static struct ffa_value ffa_send_check_transition(
struct vm_locked from, uint32_t share_func,
ffa_memory_access_permissions_t permissions, uint32_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t *from_mode)
{
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
const uint32_t required_from_mode =
ffa_memory_permissions_to_mode(permissions);
struct ffa_value ret;
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n", fragment_count);
return ret;
}
/* Ensure the address range is normal memory and not a device. */
if (*orig_from_mode & MM_MODE_D) {
dlog_verbose("Can't share device memory (mode is %#x).\n",
*orig_from_mode);
return ffa_error(FFA_DENIED);
}
/*
* Ensure the sender is the owner and has exclusive access to the
* memory.
*/
if ((*orig_from_mode & state_mask) != 0) {
return ffa_error(FFA_DENIED);
}
if ((*orig_from_mode & required_from_mode) != required_from_mode) {
dlog_verbose(
"Sender tried to send memory with permissions which "
"required mode %#x but only had %#x itself.\n",
required_from_mode, *orig_from_mode);
return ffa_error(FFA_DENIED);
}
/* Find the appropriate new mode. */
*from_mode = ~state_mask & *orig_from_mode;
switch (share_func) {
case FFA_MEM_DONATE_32:
*from_mode |= MM_MODE_INVALID | MM_MODE_UNOWNED;
break;
case FFA_MEM_LEND_32:
*from_mode |= MM_MODE_INVALID;
break;
case FFA_MEM_SHARE_32:
*from_mode |= MM_MODE_SHARED;
break;
default:
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
static struct ffa_value ffa_relinquish_check_transition(
struct vm_locked from, uint32_t *orig_from_mode,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t *from_mode)
{
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
uint32_t orig_from_state;
struct ffa_value ret;
ret = constituents_get_mode(from, orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
return ret;
}
/* Ensure the address range is normal memory and not a device. */
if (*orig_from_mode & MM_MODE_D) {
dlog_verbose("Can't relinquish device memory (mode is %#x).\n",
*orig_from_mode);
return ffa_error(FFA_DENIED);
}
/*
* Ensure the relinquishing VM is not the owner but has access to the
* memory.
*/
orig_from_state = *orig_from_mode & state_mask;
if ((orig_from_state & ~MM_MODE_SHARED) != MM_MODE_UNOWNED) {
dlog_verbose(
"Tried to relinquish memory in state %#x (masked %#x "
"but should be %#x).\n",
*orig_from_mode, orig_from_state, MM_MODE_UNOWNED);
return ffa_error(FFA_DENIED);
}
/* Find the appropriate new mode. */
*from_mode = (~state_mask & *orig_from_mode) | MM_MODE_UNMAPPED_MASK;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Verify that all pages have the same mode, that the starting mode
* constitutes a valid state and obtain the next mode to apply
* to the retrieving VM.
*
* Returns:
* 1) FFA_DENIED if a state transition was not found;
* 2) FFA_DENIED if the pages being shared do not have the same mode within
* the <to> VM;
* 3) FFA_INVALID_PARAMETERS if the beginning and end IPAs are not page
* aligned;
* 4) FFA_INVALID_PARAMETERS if the requested share type was not handled.
* Or FFA_SUCCESS on success.
*/
static struct ffa_value ffa_retrieve_check_transition(
struct vm_locked to, uint32_t share_func,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t memory_to_attributes, uint32_t *to_mode)
{
uint32_t orig_to_mode;
struct ffa_value ret;
ret = constituents_get_mode(to, &orig_to_mode, fragments,
fragment_constituent_counts,
fragment_count);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Inconsistent modes.\n");
return ret;
}
if (share_func == FFA_MEM_RECLAIM_32) {
const uint32_t state_mask =
MM_MODE_INVALID | MM_MODE_UNOWNED | MM_MODE_SHARED;
uint32_t orig_to_state = orig_to_mode & state_mask;
if (orig_to_state != MM_MODE_INVALID &&
orig_to_state != MM_MODE_SHARED) {
return ffa_error(FFA_DENIED);
}
} else {
/*
* Ensure the retriever has the expected state. We don't care
* about the MM_MODE_SHARED bit; either with or without it set
* are both valid representations of the !O-NA state.
*/
if ((orig_to_mode & MM_MODE_UNMAPPED_MASK) !=
MM_MODE_UNMAPPED_MASK) {
return ffa_error(FFA_DENIED);
}
}
/* Find the appropriate new mode. */
*to_mode = memory_to_attributes;
switch (share_func) {
case FFA_MEM_DONATE_32:
*to_mode |= 0;
break;
case FFA_MEM_LEND_32:
*to_mode |= MM_MODE_UNOWNED;
break;
case FFA_MEM_SHARE_32:
*to_mode |= MM_MODE_UNOWNED | MM_MODE_SHARED;
break;
case FFA_MEM_RECLAIM_32:
*to_mode |= 0;
break;
default:
dlog_error("Invalid share_func %#x.\n", share_func);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Updates a VM's page table such that the given set of physical address ranges
* are mapped in the address space at the corresponding address ranges, in the
* mode provided.
*
* If commit is false, the page tables will be allocated from the mpool but no
* mappings will actually be updated. This function must always be called first
* with commit false to check that it will succeed before calling with commit
* true, to avoid leaving the page table in a half-updated state. To make a
* series of changes atomically you can call them all with commit false before
* calling them all with commit true.
*
* mm_vm_defrag should always be called after a series of page table updates,
* whether they succeed or fail.
*
* Returns true on success, or false if the update failed and no changes were
* made to memory mappings.
*/
static bool ffa_region_group_identity_map(
struct vm_locked vm_locked,
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
int mode, struct mpool *ppool, bool commit)
{
uint32_t i;
uint32_t j;
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
for (j = 0; j < fragment_constituent_counts[i]; ++j) {
size_t size = fragments[i][j].page_count * PAGE_SIZE;
paddr_t pa_begin =
pa_from_ipa(ipa_init(fragments[i][j].address));
paddr_t pa_end = pa_add(pa_begin, size);
if (commit) {
vm_identity_commit(vm_locked, pa_begin, pa_end,
mode, ppool, NULL);
} else if (!vm_identity_prepare(vm_locked, pa_begin,
pa_end, mode, ppool)) {
return false;
}
}
}
return true;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool clear_memory(paddr_t begin, paddr_t end, struct mpool *ppool)
{
/*
* TODO: change this to a CPU local single page window rather than a
* global mapping of the whole range. Such an approach will limit
* the changes to stage-1 tables and will allow only local
* invalidation.
*/
bool ret;
struct mm_stage1_locked stage1_locked = mm_lock_stage1();
void *ptr =
mm_identity_map(stage1_locked, begin, end, MM_MODE_W, ppool);
size_t size = pa_difference(begin, end);
if (!ptr) {
/* TODO: partial defrag of failed range. */
/* Recover any memory consumed in failed mapping. */
mm_defrag(stage1_locked, ppool);
goto fail;
}
memset_s(ptr, size, 0, size);
arch_mm_flush_dcache(ptr, size);
mm_unmap(stage1_locked, begin, end, ppool);
ret = true;
goto out;
fail:
ret = false;
out:
mm_unlock_stage1(&stage1_locked);
return ret;
}
/**
* Clears a region of physical memory by overwriting it with zeros. The data is
* flushed from the cache so the memory has been cleared across the system.
*/
static bool ffa_clear_memory_constituents(
struct ffa_memory_region_constituent **fragments,
const uint32_t *fragment_constituent_counts, uint32_t fragment_count,
struct mpool *page_pool)
{
struct mpool local_page_pool;
uint32_t i;
struct mm_stage1_locked stage1_locked;
bool ret = false;
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure each constituent that is mapped can be
* unmapped again afterwards.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/* Iterate over the memory region constituents within each fragment. */
for (i = 0; i < fragment_count; ++i) {
uint32_t j;
for (j = 0; j < fragment_constituent_counts[j]; ++j) {
size_t size = fragments[i][j].page_count * PAGE_SIZE;
paddr_t begin =
pa_from_ipa(ipa_init(fragments[i][j].address));
paddr_t end = pa_add(begin, size);
if (!clear_memory(begin, end, &local_page_pool)) {
/*
* api_clear_memory will defrag on failure, so
* no need to do it here.
*/
goto out;
}
}
}
/*
* Need to defrag after clearing, as it may have added extra mappings to
* the stage 1 page table.
*/
stage1_locked = mm_lock_stage1();
mm_defrag(stage1_locked, &local_page_pool);
mm_unlock_stage1(&stage1_locked);
ret = true;
out:
mpool_fini(&local_page_pool);
return ret;
}
/**
* Validates and prepares memory to be sent from the calling VM to another.
*
* This function requires the calling context to hold the <from> VM lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete the
* request.
* 3) FFA_DENIED - The sender doesn't have sufficient access to send the
* memory with the given permissions.
* Success is indicated by FFA_SUCCESS.
*/
static struct ffa_value ffa_send_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t share_func, ffa_memory_access_permissions_t permissions,
struct mpool *page_pool, bool clear, uint32_t *orig_from_mode_ret)
{
struct vm *from = from_locked.vm;
uint32_t i;
uint32_t orig_from_mode;
uint32_t from_mode;
struct mpool local_page_pool;
struct ffa_value ret;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
dlog_verbose("Constituents not aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/*
* Check if the state transition is lawful for the sender, ensure that
* all constituents of a memory region being shared are at the same
* state.
*/
ret = ffa_send_check_transition(from_locked, share_func, permissions,
&orig_from_mode, fragments,
fragment_constituent_counts,
fragment_count, &from_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for send.\n");
return ret;
}
if (orig_from_mode_ret != NULL) {
*orig_from_mode_ret = orig_from_mode;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries
* without committing, to make sure the entire operation will succeed
* without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Update the mapping for the sender. This won't allocate because the
* transaction was already prepared above, but may free pages in the
* case that a whole block is being unmapped that was previously
* partially mapped.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, &local_page_pool, true));
/* Clear the memory so no VM or device can see the previous contents. */
if (clear && !ffa_clear_memory_constituents(
fragments, fragment_constituent_counts,
fragment_count, page_pool)) {
/*
* On failure, roll back by returning memory to the sender. This
* may allocate pages which were previously freed into
* `local_page_pool` by the call above, but will never allocate
* more pages than that so can never fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, orig_from_mode, &local_page_pool,
true));
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
mm_vm_defrag(&from->ptable, page_pool);
return ret;
}
/**
* Validates and maps memory shared from one VM to another.
*
* This function requires the calling context to hold the <to> lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete
* the request.
* Success is indicated by FFA_SUCCESS.
*/
static struct ffa_value ffa_retrieve_check_update(
struct vm_locked to_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
uint32_t memory_to_attributes, uint32_t share_func, bool clear,
struct mpool *page_pool)
{
struct vm *to = to_locked.vm;
uint32_t i;
uint32_t to_mode;
struct mpool local_page_pool;
struct ffa_value ret;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
for (i = 0; i < fragment_count; ++i) {
if (!is_aligned(fragments[i], 8)) {
return ffa_error(FFA_INVALID_PARAMETERS);
}
}
/*
* Check if the state transition is lawful for the recipient, and ensure
* that all constituents of the memory region being retrieved are at the
* same state.
*/
ret = ffa_retrieve_check_transition(
to_locked, share_func, fragments, fragment_constituent_counts,
fragment_count, memory_to_attributes, &to_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for retrieve.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries in
* the recipient page tables without committing, to make sure the entire
* operation will succeed without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
to_locked, fragments, fragment_constituent_counts,
fragment_count, to_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
dlog_verbose(
"Insufficient memory to update recipient page "
"table.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/* Clear the memory so no VM or device can see the previous contents. */
if (clear && !ffa_clear_memory_constituents(
fragments, fragment_constituent_counts,
fragment_count, page_pool)) {
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Complete the transfer by mapping the memory into the recipient. This
* won't allocate because the transaction was already prepared above, so
* it doesn't need to use the `local_page_pool`.
*/
CHECK(ffa_region_group_identity_map(
to_locked, fragments, fragment_constituent_counts,
fragment_count, to_mode, page_pool, true));
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
mm_vm_defrag(&to->ptable, page_pool);
return ret;
}
/**
* Reclaims the given memory from the TEE. To do this space is first reserved in
* the <to> VM's page table, then the reclaim request is sent on to the TEE,
* then (if that is successful) the memory is mapped back into the <to> VM's
* page table.
*
* This function requires the calling context to hold the <to> lock.
*
* Returns:
* In case of error, one of the following values is returned:
* 1) FFA_INVALID_PARAMETERS - The endpoint provided parameters were
* erroneous;
* 2) FFA_NO_MEMORY - Hafnium did not have sufficient memory to complete
* the request.
* Success is indicated by FFA_SUCCESS.
*/
static struct ffa_value ffa_tee_reclaim_check_update(
struct vm_locked to_locked, ffa_memory_handle_t handle,
struct ffa_memory_region_constituent *constituents,
uint32_t constituent_count, uint32_t memory_to_attributes, bool clear,
struct mpool *page_pool)
{
struct vm *to = to_locked.vm;
uint32_t to_mode;
struct mpool local_page_pool;
struct ffa_value ret;
ffa_memory_region_flags_t tee_flags;
/*
* Make sure constituents are properly aligned to a 64-bit boundary. If
* not we would get alignment faults trying to read (64-bit) values.
*/
if (!is_aligned(constituents, 8)) {
dlog_verbose("Constituents not aligned.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Check if the state transition is lawful for the recipient, and ensure
* that all constituents of the memory region being retrieved are at the
* same state.
*/
ret = ffa_retrieve_check_transition(to_locked, FFA_MEM_RECLAIM_32,
&constituents, &constituent_count,
1, memory_to_attributes, &to_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries in
* the recipient page tables without committing, to make sure the entire
* operation will succeed without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(to_locked, &constituents,
&constituent_count, 1, to_mode,
page_pool, false)) {
/* TODO: partial defrag of failed range. */
dlog_verbose(
"Insufficient memory to update recipient page "
"table.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Forward the request to the TEE and see what happens.
*/
tee_flags = 0;
if (clear) {
tee_flags |= FFA_MEMORY_REGION_FLAG_CLEAR;
}
ret = arch_tee_call((struct ffa_value){.func = FFA_MEM_RECLAIM_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = tee_flags});
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose(
"Got %#x (%d) from TEE in response to FFA_MEM_RECLAIM, "
"expected FFA_SUCCESS.\n",
ret.func, ret.arg2);
goto out;
}
/*
* The TEE was happy with it, so complete the reclaim by mapping the
* memory into the recipient. This won't allocate because the
* transaction was already prepared above, so it doesn't need to use the
* `local_page_pool`.
*/
CHECK(ffa_region_group_identity_map(to_locked, &constituents,
&constituent_count, 1, to_mode,
page_pool, true));
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
mm_vm_defrag(&to->ptable, page_pool);
return ret;
}
static struct ffa_value ffa_relinquish_check_update(
struct vm_locked from_locked,
struct ffa_memory_region_constituent **fragments,
uint32_t *fragment_constituent_counts, uint32_t fragment_count,
struct mpool *page_pool, bool clear)
{
uint32_t orig_from_mode;
uint32_t from_mode;
struct mpool local_page_pool;
struct ffa_value ret;
ret = ffa_relinquish_check_transition(
from_locked, &orig_from_mode, fragments,
fragment_constituent_counts, fragment_count, &from_mode);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose("Invalid transition for relinquish.\n");
return ret;
}
/*
* Create a local pool so any freed memory can't be used by another
* thread. This is to ensure the original mapping can be restored if the
* clear fails.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
/*
* First reserve all required memory for the new page table entries
* without committing, to make sure the entire operation will succeed
* without exhausting the page pool.
*/
if (!ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, page_pool, false)) {
/* TODO: partial defrag of failed range. */
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
/*
* Update the mapping for the sender. This won't allocate because the
* transaction was already prepared above, but may free pages in the
* case that a whole block is being unmapped that was previously
* partially mapped.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, from_mode, &local_page_pool, true));
/* Clear the memory so no VM or device can see the previous contents. */
if (clear && !ffa_clear_memory_constituents(
fragments, fragment_constituent_counts,
fragment_count, page_pool)) {
/*
* On failure, roll back by returning memory to the sender. This
* may allocate pages which were previously freed into
* `local_page_pool` by the call above, but will never allocate
* more pages than that so can never fail.
*/
CHECK(ffa_region_group_identity_map(
from_locked, fragments, fragment_constituent_counts,
fragment_count, orig_from_mode, &local_page_pool,
true));
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
ret = (struct ffa_value){.func = FFA_SUCCESS_32};
out:
mpool_fini(&local_page_pool);
/*
* Tidy up the page table by reclaiming failed mappings (if there was an
* error) or merging entries into blocks where possible (on success).
*/
mm_vm_defrag(&from_locked.vm->ptable, page_pool);
return ret;
}
/**
* Complete a memory sending operation by checking that it is valid, updating
* the sender page table, and then either marking the share state as having
* completed sending (on success) or freeing it (on failure).
*
* Returns FFA_SUCCESS with the handle encoded, or the relevant FFA_ERROR.
*/
static struct ffa_value ffa_memory_send_complete(
struct vm_locked from_locked, struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool,
uint32_t *orig_from_mode_ret)
{
struct ffa_memory_region *memory_region = share_state->memory_region;
struct ffa_value ret;
/* Lock must be held. */
CHECK(share_states.share_states != NULL);
/* Check that state is valid in sender page table and update. */
ret = ffa_send_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, share_state->share_func,
memory_region->receivers[0].receiver_permissions.permissions,
page_pool, memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR,
orig_from_mode_ret);
if (ret.func != FFA_SUCCESS_32) {
/*
* Free share state, it failed to send so it can't be retrieved.
*/
dlog_verbose("Complete failed, freeing share state.\n");
share_state_free(share_states, share_state, page_pool);
return ret;
}
share_state->sending_complete = true;
dlog_verbose("Marked sending complete.\n");
return ffa_mem_success(share_state->handle);
}
/**
* Check that the given `memory_region` represents a valid memory send request
* of the given `share_func` type, return the clear flag and permissions via the
* respective output parameters, and update the permissions if necessary.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
static struct ffa_value ffa_memory_send_validate(
struct vm_locked from_locked, struct ffa_memory_region *memory_region,
uint32_t memory_share_length, uint32_t fragment_length,
uint32_t share_func, ffa_memory_access_permissions_t *permissions)
{
struct ffa_composite_memory_region *composite;
uint32_t receivers_length;
uint32_t constituents_offset;
uint32_t constituents_length;
enum ffa_data_access data_access;
enum ffa_instruction_access instruction_access;
CHECK(permissions != NULL);
/*
* This should already be checked by the caller, just making the
* assumption clear here.
*/
CHECK(memory_region->receiver_count == 1);
/* The sender must match the message sender. */
if (memory_region->sender != from_locked.vm->id) {
dlog_verbose("Invalid sender %d.\n", memory_region->sender);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Ensure that the composite header is within the memory bounds and
* doesn't overlap the first part of the message.
*/
receivers_length = sizeof(struct ffa_memory_access) *
memory_region->receiver_count;
constituents_offset =
ffa_composite_constituent_offset(memory_region, 0);
if (memory_region->receivers[0].composite_memory_region_offset <
sizeof(struct ffa_memory_region) + receivers_length ||
constituents_offset > fragment_length) {
dlog_verbose(
"Invalid composite memory region descriptor offset "
"%d.\n",
memory_region->receivers[0]
.composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Ensure the number of constituents are within the memory bounds.
*/
constituents_length = sizeof(struct ffa_memory_region_constituent) *
composite->constituent_count;
if (memory_share_length != constituents_offset + constituents_length) {
dlog_verbose("Invalid length %d or composite offset %d.\n",
memory_share_length,
memory_region->receivers[0]
.composite_memory_region_offset);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (fragment_length < memory_share_length &&
fragment_length < HF_MAILBOX_SIZE) {
dlog_warning(
"Initial fragment length %d smaller than mailbox "
"size.\n",
fragment_length);
}
/*
* Clear is not allowed for memory sharing, as the sender still has
* access to the memory.
*/
if ((memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR) &&
share_func == FFA_MEM_SHARE_32) {
dlog_verbose("Memory can't be cleared while being shared.\n");
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* No other flags are allowed/supported here. */
if (memory_region->flags & ~FFA_MEMORY_REGION_FLAG_CLEAR) {
dlog_verbose("Invalid flags %#x.\n", memory_region->flags);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* Check that the permissions are valid. */
*permissions =
memory_region->receivers[0].receiver_permissions.permissions;
data_access = ffa_get_data_access_attr(*permissions);
instruction_access = ffa_get_instruction_access_attr(*permissions);
if (data_access == FFA_DATA_ACCESS_RESERVED ||
instruction_access == FFA_INSTRUCTION_ACCESS_RESERVED) {
dlog_verbose("Reserved value for receiver permissions %#x.\n",
*permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (instruction_access != FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid instruction access permissions %#x for "
"sending memory.\n",
*permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_SHARE_32) {
if (data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x for "
"sharing memory.\n",
*permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* According to section 6.11.3 of the FF-A spec NX is required
* for share operations (but must not be specified by the
* sender) so set it in the copy that we store, ready to be
* returned to the retriever.
*/
ffa_set_instruction_access_attr(permissions,
FFA_INSTRUCTION_ACCESS_NX);
memory_region->receivers[0].receiver_permissions.permissions =
*permissions;
}
if (share_func == FFA_MEM_LEND_32 &&
data_access == FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x for lending "
"memory.\n",
*permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_func == FFA_MEM_DONATE_32 &&
data_access != FFA_DATA_ACCESS_NOT_SPECIFIED) {
dlog_verbose(
"Invalid data access permissions %#x for donating "
"memory.\n",
*permissions);
return ffa_error(FFA_INVALID_PARAMETERS);
}
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/** Forwards a memory send message on to the TEE. */
static struct ffa_value memory_send_tee_forward(
struct vm_locked tee_locked, ffa_vm_id_t sender_vm_id,
uint32_t share_func, struct ffa_memory_region *memory_region,
uint32_t memory_share_length, uint32_t fragment_length)
{
struct ffa_value ret;
memcpy_s(tee_locked.vm->mailbox.recv, FFA_MSG_PAYLOAD_MAX,
memory_region, fragment_length);
tee_locked.vm->mailbox.recv_size = fragment_length;
tee_locked.vm->mailbox.recv_sender = sender_vm_id;
tee_locked.vm->mailbox.recv_func = share_func;
tee_locked.vm->mailbox.state = MAILBOX_STATE_RECEIVED;
ret = arch_tee_call((struct ffa_value){.func = share_func,
.arg1 = memory_share_length,
.arg2 = fragment_length});
/*
* After the call to the TEE completes it must have finished reading its
* RX buffer, so it is ready for another message.
*/
tee_locked.vm->mailbox.state = MAILBOX_STATE_EMPTY;
return ret;
}
/**
* Gets the share state for continuing an operation to donate, lend or share
* memory, and checks that it is a valid request.
*
* Returns FFA_SUCCESS if the request was valid, or the relevant FFA_ERROR if
* not.
*/
static struct ffa_value ffa_memory_send_continue_validate(
struct share_states_locked share_states, ffa_memory_handle_t handle,
struct ffa_memory_share_state **share_state_ret, ffa_vm_id_t from_vm_id,
struct mpool *page_pool)
{
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
CHECK(share_state_ret != NULL);
/*
* Look up the share state by handle and make sure that the VM ID
* matches.
*/
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose(
"Invalid handle %#x for memory send continuation.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
memory_region = share_state->memory_region;
if (memory_region->sender != from_vm_id) {
dlog_verbose("Invalid sender %d.\n", memory_region->sender);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->sending_complete) {
dlog_verbose(
"Sending of memory handle %#x is already complete.\n",
handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (share_state->fragment_count == MAX_FRAGMENTS) {
/*
* Log a warning as this is a sign that MAX_FRAGMENTS should
* probably be increased.
*/
dlog_warning(
"Too many fragments for memory share with handle %#x; "
"only %d supported.\n",
handle, MAX_FRAGMENTS);
/* Free share state, as it's not possible to complete it. */
share_state_free(share_states, share_state, page_pool);
return ffa_error(FFA_NO_MEMORY);
}
*share_state_ret = share_state;
return (struct ffa_value){.func = FFA_SUCCESS_32};
}
/**
* Forwards a memory send continuation message on to the TEE.
*/
static struct ffa_value memory_send_continue_tee_forward(
struct vm_locked tee_locked, ffa_vm_id_t sender_vm_id, void *fragment,
uint32_t fragment_length, ffa_memory_handle_t handle)
{
struct ffa_value ret;
memcpy_s(tee_locked.vm->mailbox.recv, FFA_MSG_PAYLOAD_MAX, fragment,
fragment_length);
tee_locked.vm->mailbox.recv_size = fragment_length;
tee_locked.vm->mailbox.recv_sender = sender_vm_id;
tee_locked.vm->mailbox.recv_func = FFA_MEM_FRAG_TX_32;
tee_locked.vm->mailbox.state = MAILBOX_STATE_RECEIVED;
ret = arch_tee_call(
(struct ffa_value){.func = FFA_MEM_FRAG_TX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = fragment_length,
.arg4 = (uint64_t)sender_vm_id << 16});
/*
* After the call to the TEE completes it must have finished reading its
* RX buffer, so it is ready for another message.
*/
tee_locked.vm->mailbox.state = MAILBOX_STATE_EMPTY;
return ret;
}
/**
* Validates a call to donate, lend or share memory to a non-TEE VM and then
* updates the stage-2 page tables. Specifically, check if the message length
* and number of memory region constituents match, and if the transition is
* valid for the type of memory sending operation.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool. The caller must have also
* validated that the receiver VM ID is valid.
*
* This function takes ownership of the `memory_region` passed in and will free
* it when necessary; it must not be freed by the caller.
*/
struct ffa_value ffa_memory_send(struct vm_locked from_locked,
struct ffa_memory_region *memory_region,
uint32_t memory_share_length,
uint32_t fragment_length, uint32_t share_func,
struct mpool *page_pool)
{
ffa_memory_access_permissions_t permissions;
struct ffa_value ret;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
/*
* If there is an error validating the `memory_region` then we need to
* free it because we own it but we won't be storing it in a share state
* after all.
*/
ret = ffa_memory_send_validate(from_locked, memory_region,
memory_share_length, fragment_length,
share_func, &permissions);
if (ret.func != FFA_SUCCESS_32) {
mpool_free(page_pool, memory_region);
return ret;
}
/* Set flag for share function, ready to be retrieved later. */
switch (share_func) {
case FFA_MEM_SHARE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_SHARE;
break;
case FFA_MEM_LEND_32:
memory_region->flags |= FFA_MEMORY_REGION_TRANSACTION_TYPE_LEND;
break;
case FFA_MEM_DONATE_32:
memory_region->flags |=
FFA_MEMORY_REGION_TRANSACTION_TYPE_DONATE;
break;
}
share_states = share_states_lock();
/*
* Allocate a share state before updating the page table. Otherwise if
* updating the page table succeeded but allocating the share state
* failed then it would leave the memory in a state where nobody could
* get it back.
*/
if (!allocate_share_state(share_states, share_func, memory_region,
fragment_length, FFA_MEMORY_HANDLE_INVALID,
&share_state)) {
dlog_verbose("Failed to allocate share state.\n");
mpool_free(page_pool, memory_region);
ret = ffa_error(FFA_NO_MEMORY);
goto out;
}
if (fragment_length == memory_share_length) {
/* No more fragments to come, everything fit in one message. */
ret = ffa_memory_send_complete(from_locked, share_states,
share_state, page_pool, NULL);
} else {
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)share_state->handle,
.arg2 = (uint32_t)(share_state->handle >> 32),
.arg3 = fragment_length};
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Validates a call to donate, lend or share memory to the TEE and then updates
* the stage-2 page tables. Specifically, check if the message length and number
* of memory region constituents match, and if the transition is valid for the
* type of memory sending operation.
*
* Assumes that the caller has already found and locked the sender VM and the
* TEE VM, and copied the memory region descriptor from the sender's TX buffer
* to a freshly allocated page from Hafnium's internal pool. The caller must
* have also validated that the receiver VM ID is valid.
*
* This function takes ownership of the `memory_region` passed in and will free
* it when necessary; it must not be freed by the caller.
*/
struct ffa_value ffa_memory_tee_send(
struct vm_locked from_locked, struct vm_locked to_locked,
struct ffa_memory_region *memory_region, uint32_t memory_share_length,
uint32_t fragment_length, uint32_t share_func, struct mpool *page_pool)
{
ffa_memory_access_permissions_t permissions;
struct ffa_value ret;
/*
* If there is an error validating the `memory_region` then we need to
* free it because we own it but we won't be storing it in a share state
* after all.
*/
ret = ffa_memory_send_validate(from_locked, memory_region,
memory_share_length, fragment_length,
share_func, &permissions);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
if (fragment_length == memory_share_length) {
/* No more fragments to come, everything fit in one message. */
struct ffa_composite_memory_region *composite =
ffa_memory_region_get_composite(memory_region, 0);
struct ffa_memory_region_constituent *constituents =
composite->constituents;
struct mpool local_page_pool;
uint32_t orig_from_mode;
/*
* Use a local page pool so that we can roll back if necessary.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
ret = ffa_send_check_update(
from_locked, &constituents,
&composite->constituent_count, 1, share_func,
permissions, &local_page_pool,
memory_region->flags & FFA_MEMORY_REGION_FLAG_CLEAR,
&orig_from_mode);
if (ret.func != FFA_SUCCESS_32) {
mpool_fini(&local_page_pool);
goto out;
}
/* Forward memory send message on to TEE. */
ret = memory_send_tee_forward(
to_locked, from_locked.vm->id, share_func,
memory_region, memory_share_length, fragment_length);
if (ret.func != FFA_SUCCESS_32) {
dlog_verbose(
"TEE didn't successfully complete memory send "
"operation; returned %#x (%d). Rolling back.\n",
ret.func, ret.arg2);
/*
* The TEE failed to complete the send operation, so
* roll back the page table update for the VM. This
* can't fail because it won't try to allocate more
* memory than was freed into the `local_page_pool` by
* `ffa_send_check_update` in the initial update.
*/
CHECK(ffa_region_group_identity_map(
from_locked, &constituents,
&composite->constituent_count, 1,
orig_from_mode, &local_page_pool, true));
}
mpool_fini(&local_page_pool);
} else {
struct share_states_locked share_states = share_states_lock();
ffa_memory_handle_t handle;
/*
* We need to wait for the rest of the fragments before we can
* check whether the transaction is valid and unmap the memory.
* Call the TEE so it can do its initial validation and assign a
* handle, and allocate a share state to keep what we have so
* far.
*/
ret = memory_send_tee_forward(
to_locked, from_locked.vm->id, share_func,
memory_region, memory_share_length, fragment_length);
if (ret.func == FFA_ERROR_32) {
goto out_unlock;
} else if (ret.func != FFA_MEM_FRAG_RX_32) {
dlog_warning(
"Got %#x from TEE in response to %#x for "
"fragment with with %d/%d, expected "
"FFA_MEM_FRAG_RX.\n",
ret.func, share_func, fragment_length,
memory_share_length);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock;
}
handle = ffa_frag_handle(ret);
if (ret.arg3 != fragment_length) {
dlog_warning(
"Got unexpected fragment offset %d for "
"FFA_MEM_FRAG_RX from TEE (expected %d).\n",
ret.arg3, fragment_length);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock;
}
if (ffa_frag_sender(ret) != from_locked.vm->id) {
dlog_warning(
"Got unexpected sender ID %d for "
"FFA_MEM_FRAG_RX from TEE (expected %d).\n",
ffa_frag_sender(ret), from_locked.vm->id);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_unlock;
}
if (!allocate_share_state(share_states, share_func,
memory_region, fragment_length,
handle, NULL)) {
dlog_verbose("Failed to allocate share state.\n");
ret = ffa_error(FFA_NO_MEMORY);
goto out_unlock;
}
/*
* Don't free the memory region fragment, as it has been stored
* in the share state.
*/
memory_region = NULL;
out_unlock:
share_states_unlock(&share_states);
}
out:
if (memory_region != NULL) {
mpool_free(page_pool, memory_region);
}
dump_share_states();
return ret;
}
/**
* Continues an operation to donate, lend or share memory to a non-TEE VM. If
* this is the last fragment then checks that the transition is valid for the
* type of memory sending operation and updates the stage-2 page tables of the
* sender.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool.
*
* This function takes ownership of the `fragment` passed in; it must not be
* freed by the caller.
*/
struct ffa_value ffa_memory_send_continue(struct vm_locked from_locked,
void *fragment,
uint32_t fragment_length,
ffa_memory_handle_t handle,
struct mpool *page_pool)
{
struct share_states_locked share_states = share_states_lock();
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_memory_region *memory_region;
ret = ffa_memory_send_continue_validate(share_states, handle,
&share_state,
from_locked.vm->id, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out_free_fragment;
}
memory_region = share_state->memory_region;
if (memory_region->receivers[0].receiver_permissions.receiver ==
HF_TEE_VM_ID) {
dlog_error(
"Got hypervisor-allocated handle for memory send to "
"TEE. This should never happen, and indicates a bug in "
"EL3 code.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_free_fragment;
}
/* Add this fragment. */
share_state->fragments[share_state->fragment_count] = fragment;
share_state->fragment_constituent_counts[share_state->fragment_count] =
fragment_length / sizeof(struct ffa_memory_region_constituent);
share_state->fragment_count++;
/* Check whether the memory send operation is now ready to complete. */
if (share_state_sending_complete(share_states, share_state)) {
ret = ffa_memory_send_complete(from_locked, share_states,
share_state, page_pool, NULL);
} else {
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = share_state_next_fragment_offset(share_states,
share_state)};
}
goto out;
out_free_fragment:
mpool_free(page_pool, fragment);
out:
share_states_unlock(&share_states);
return ret;
}
/**
* Continues an operation to donate, lend or share memory to the TEE VM. If this
* is the last fragment then checks that the transition is valid for the type of
* memory sending operation and updates the stage-2 page tables of the sender.
*
* Assumes that the caller has already found and locked the sender VM and copied
* the memory region descriptor from the sender's TX buffer to a freshly
* allocated page from Hafnium's internal pool.
*
* This function takes ownership of the `memory_region` passed in and will free
* it when necessary; it must not be freed by the caller.
*/
struct ffa_value ffa_memory_tee_send_continue(struct vm_locked from_locked,
struct vm_locked to_locked,
void *fragment,
uint32_t fragment_length,
ffa_memory_handle_t handle,
struct mpool *page_pool)
{
struct share_states_locked share_states = share_states_lock();
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_memory_region *memory_region;
ret = ffa_memory_send_continue_validate(share_states, handle,
&share_state,
from_locked.vm->id, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out_free_fragment;
}
memory_region = share_state->memory_region;
if (memory_region->receivers[0].receiver_permissions.receiver !=
HF_TEE_VM_ID) {
dlog_error(
"Got SPM-allocated handle for memory send to non-TEE "
"VM. This should never happen, and indicates a bug.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out_free_fragment;
}
if (to_locked.vm->mailbox.state != MAILBOX_STATE_EMPTY ||
to_locked.vm->mailbox.recv == NULL) {
/*
* If the TEE RX buffer is not available, tell the sender to
* retry by returning the current offset again.
*/
ret = (struct ffa_value){
.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = share_state_next_fragment_offset(share_states,
share_state),
};
goto out_free_fragment;
}
/* Add this fragment. */
share_state->fragments[share_state->fragment_count] = fragment;
share_state->fragment_constituent_counts[share_state->fragment_count] =
fragment_length / sizeof(struct ffa_memory_region_constituent);
share_state->fragment_count++;
/* Check whether the memory send operation is now ready to complete. */
if (share_state_sending_complete(share_states, share_state)) {
struct mpool local_page_pool;
uint32_t orig_from_mode;
/*
* Use a local page pool so that we can roll back if necessary.
*/
mpool_init_with_fallback(&local_page_pool, page_pool);
ret = ffa_memory_send_complete(from_locked, share_states,
share_state, &local_page_pool,
&orig_from_mode);
if (ret.func == FFA_SUCCESS_32) {
/*
* Forward final fragment on to the TEE so that
* it can complete the memory sending operation.
*/
ret = memory_send_continue_tee_forward(
to_locked, from_locked.vm->id, fragment,
fragment_length, handle);
if (ret.func != FFA_SUCCESS_32) {
/*
* The error will be passed on to the caller,
* but log it here too.
*/
dlog_verbose(
"TEE didn't successfully complete "
"memory send operation; returned %#x "
"(%d). Rolling back.\n",
ret.func, ret.arg2);
/*
* The TEE failed to complete the send
* operation, so roll back the page table update
* for the VM. This can't fail because it won't
* try to allocate more memory than was freed
* into the `local_page_pool` by
* `ffa_send_check_update` in the initial
* update.
*/
CHECK(ffa_region_group_identity_map(
from_locked, share_state->fragments,
share_state
->fragment_constituent_counts,
share_state->fragment_count,
orig_from_mode, &local_page_pool,
true));
}
/* Free share state. */
share_state_free(share_states, share_state, page_pool);
} else {
/* Abort sending to TEE. */
struct ffa_value tee_ret =
arch_tee_call((struct ffa_value){
.func = FFA_MEM_RECLAIM_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32)});
if (tee_ret.func != FFA_SUCCESS_32) {
/*
* Nothing we can do if TEE doesn't abort
* properly, just log it.
*/
dlog_verbose(
"TEE didn't successfully abort failed "
"memory send operation; returned %#x "
"(%d).\n",
tee_ret.func, tee_ret.arg2);
}
/*
* We don't need to free the share state in this case
* because ffa_memory_send_complete does that already.
*/
}
mpool_fini(&local_page_pool);
} else {
uint32_t next_fragment_offset =
share_state_next_fragment_offset(share_states,
share_state);
ret = memory_send_continue_tee_forward(
to_locked, from_locked.vm->id, fragment,
fragment_length, handle);
if (ret.func != FFA_MEM_FRAG_RX_32 ||
ffa_frag_handle(ret) != handle ||
ret.arg3 != next_fragment_offset ||
ffa_frag_sender(ret) != from_locked.vm->id) {
dlog_verbose(
"Got unexpected result from forwarding "
"FFA_MEM_FRAG_TX to TEE: %#x (handle %#x, "
"offset %d, sender %d); expected "
"FFA_MEM_FRAG_RX (handle %#x, offset %d, "
"sender %d).\n",
ret.func, ffa_frag_handle(ret), ret.arg3,
ffa_frag_sender(ret), handle,
next_fragment_offset, from_locked.vm->id);
/* Free share state. */
share_state_free(share_states, share_state, page_pool);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
ret = (struct ffa_value){.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = next_fragment_offset};
}
goto out;
out_free_fragment:
mpool_free(page_pool, fragment);
out:
share_states_unlock(&share_states);
return ret;
}
/** Clean up after the receiver has finished retrieving a memory region. */
static void ffa_memory_retrieve_complete(
struct share_states_locked share_states,
struct ffa_memory_share_state *share_state, struct mpool *page_pool)
{
if (share_state->share_func == FFA_MEM_DONATE_32) {
/*
* Memory that has been donated can't be relinquished,
* so no need to keep the share state around.
*/
share_state_free(share_states, share_state, page_pool);
dlog_verbose("Freed share state for donate.\n");
}
}
struct ffa_value ffa_memory_retrieve(struct vm_locked to_locked,
struct ffa_memory_region *retrieve_request,
uint32_t retrieve_request_length,
struct mpool *page_pool)
{
uint32_t expected_retrieve_request_length =
sizeof(struct ffa_memory_region) +
retrieve_request->receiver_count *
sizeof(struct ffa_memory_access);
ffa_memory_handle_t handle = retrieve_request->handle;
ffa_memory_region_flags_t transaction_type =
retrieve_request->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK;
struct ffa_memory_region *memory_region;
ffa_memory_access_permissions_t sent_permissions;
enum ffa_data_access sent_data_access;
enum ffa_instruction_access sent_instruction_access;
ffa_memory_access_permissions_t requested_permissions;
enum ffa_data_access requested_data_access;
enum ffa_instruction_access requested_instruction_access;
ffa_memory_access_permissions_t permissions;
uint32_t memory_to_attributes;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
struct ffa_composite_memory_region *composite;
uint32_t total_length;
uint32_t fragment_length;
dump_share_states();
if (retrieve_request_length != expected_retrieve_request_length) {
dlog_verbose(
"Invalid length for FFA_MEM_RETRIEVE_REQ, expected %d "
"but was %d.\n",
expected_retrieve_request_length,
retrieve_request_length);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (retrieve_request->receiver_count != 1) {
dlog_verbose(
"Multi-way memory sharing not supported (got %d "
"receivers descriptors on FFA_MEM_RETRIEVE_REQ, "
"expected 1).\n",
retrieve_request->receiver_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_RETRIEVE_REQ.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
/*
* Check that the transaction type expected by the receiver is correct,
* if it has been specified.
*/
if (transaction_type !=
FFA_MEMORY_REGION_TRANSACTION_TYPE_UNSPECIFIED &&
transaction_type != (memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK)) {
dlog_verbose(
"Incorrect transaction type %#x for "
"FFA_MEM_RETRIEVE_REQ, expected %#x for handle %#x.\n",
transaction_type,
memory_region->flags &
FFA_MEMORY_REGION_TRANSACTION_TYPE_MASK,
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (retrieve_request->sender != memory_region->sender) {
dlog_verbose(
"Incorrect sender ID %d for FFA_MEM_RETRIEVE_REQ, "
"expected %d for handle %#x.\n",
retrieve_request->sender, memory_region->sender,
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (retrieve_request->tag != memory_region->tag) {
dlog_verbose(
"Incorrect tag %d for FFA_MEM_RETRIEVE_REQ, expected "
"%d for handle %#x.\n",
retrieve_request->tag, memory_region->tag, handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (retrieve_request->receivers[0].receiver_permissions.receiver !=
to_locked.vm->id) {
dlog_verbose(
"Retrieve request receiver VM ID %d didn't match "
"caller of FFA_MEM_RETRIEVE_REQ.\n",
retrieve_request->receivers[0]
.receiver_permissions.receiver);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (memory_region->receivers[0].receiver_permissions.receiver !=
to_locked.vm->id) {
dlog_verbose(
"Incorrect receiver VM ID %d for FFA_MEM_RETRIEVE_REQ, "
"expected %d for handle %#x.\n",
to_locked.vm->id,
memory_region->receivers[0]
.receiver_permissions.receiver,
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[0] != 0) {
dlog_verbose("Memory with handle %#x already retrieved.\n",
handle);
ret = ffa_error(FFA_DENIED);
goto out;
}
if (retrieve_request->receivers[0].composite_memory_region_offset !=
0) {
dlog_verbose(
"Retriever specified address ranges not supported (got "
"offset %d).\n",
retrieve_request->receivers[0]
.composite_memory_region_offset);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
/*
* Check permissions from sender against permissions requested by
* receiver.
*/
/* TODO: Check attributes too. */
sent_permissions =
memory_region->receivers[0].receiver_permissions.permissions;
sent_data_access = ffa_get_data_access_attr(sent_permissions);
sent_instruction_access =
ffa_get_instruction_access_attr(sent_permissions);
requested_permissions =
retrieve_request->receivers[0].receiver_permissions.permissions;
requested_data_access = ffa_get_data_access_attr(requested_permissions);
requested_instruction_access =
ffa_get_instruction_access_attr(requested_permissions);
permissions = 0;
switch (sent_data_access) {
case FFA_DATA_ACCESS_NOT_SPECIFIED:
case FFA_DATA_ACCESS_RW:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RW) {
ffa_set_data_access_attr(&permissions,
FFA_DATA_ACCESS_RW);
break;
}
/* Intentional fall-through. */
case FFA_DATA_ACCESS_RO:
if (requested_data_access == FFA_DATA_ACCESS_NOT_SPECIFIED ||
requested_data_access == FFA_DATA_ACCESS_RO) {
ffa_set_data_access_attr(&permissions,
FFA_DATA_ACCESS_RO);
break;
}
dlog_verbose(
"Invalid data access requested; sender specified "
"permissions %#x but receiver requested %#x.\n",
sent_permissions, requested_permissions);
ret = ffa_error(FFA_DENIED);
goto out;
case FFA_DATA_ACCESS_RESERVED:
panic("Got unexpected FFA_DATA_ACCESS_RESERVED. Should be "
"checked before this point.");
}
switch (sent_instruction_access) {
case FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED:
case FFA_INSTRUCTION_ACCESS_X:
if (requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED ||
requested_instruction_access == FFA_INSTRUCTION_ACCESS_X) {
ffa_set_instruction_access_attr(
&permissions, FFA_INSTRUCTION_ACCESS_X);
break;
}
case FFA_INSTRUCTION_ACCESS_NX:
if (requested_instruction_access ==
FFA_INSTRUCTION_ACCESS_NOT_SPECIFIED ||
requested_instruction_access == FFA_INSTRUCTION_ACCESS_NX) {
ffa_set_instruction_access_attr(
&permissions, FFA_INSTRUCTION_ACCESS_NX);
break;
}
dlog_verbose(
"Invalid instruction access requested; sender "
"specified permissions %#x but receiver requested "
"%#x.\n",
sent_permissions, requested_permissions);
ret = ffa_error(FFA_DENIED);
goto out;
case FFA_INSTRUCTION_ACCESS_RESERVED:
panic("Got unexpected FFA_INSTRUCTION_ACCESS_RESERVED. Should "
"be checked before this point.");
}
memory_to_attributes = ffa_memory_permissions_to_mode(permissions);
ret = ffa_retrieve_check_update(
to_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, memory_to_attributes,
share_state->share_func, false, page_pool);
if (ret.func != FFA_SUCCESS_32) {
goto out;
}
/*
* Copy response to RX buffer of caller and deliver the message. This
* must be done before the share_state is (possibly) freed.
*/
/* TODO: combine attributes from sender and request. */
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Constituents which we received in the first fragment should always
* fit in the first fragment we are sending, because the header is the
* same size in both cases and we have a fixed message buffer size. So
* `ffa_retrieved_memory_region_init` should never fail.
*/
CHECK(ffa_retrieved_memory_region_init(
to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
memory_region->sender, memory_region->attributes,
memory_region->flags, handle, to_locked.vm->id, permissions,
composite->page_count, composite->constituent_count,
share_state->fragments[0],
share_state->fragment_constituent_counts[0], &total_length,
&fragment_length));
to_locked.vm->mailbox.recv_size = fragment_length;
to_locked.vm->mailbox.recv_sender = HF_HYPERVISOR_VM_ID;
to_locked.vm->mailbox.recv_func = FFA_MEM_RETRIEVE_RESP_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_READ;
share_state->retrieved_fragment_count[0] = 1;
if (share_state->retrieved_fragment_count[0] ==
share_state->fragment_count) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
ret = (struct ffa_value){.func = FFA_MEM_RETRIEVE_RESP_32,
.arg1 = total_length,
.arg2 = fragment_length};
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
struct ffa_value ffa_memory_retrieve_continue(struct vm_locked to_locked,
ffa_memory_handle_t handle,
uint32_t fragment_offset,
struct mpool *page_pool)
{
struct ffa_memory_region *memory_region;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_value ret;
uint32_t fragment_index;
uint32_t retrieved_constituents_count;
uint32_t i;
uint32_t expected_fragment_offset;
uint32_t remaining_constituent_count;
uint32_t fragment_length;
dump_share_states();
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_FRAG_RX.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (memory_region->receivers[0].receiver_permissions.receiver !=
to_locked.vm->id) {
dlog_verbose(
"Caller of FFA_MEM_FRAG_RX (%d) is not receiver (%d) "
"of handle %#x.\n",
to_locked.vm->id,
memory_region->receivers[0]
.receiver_permissions.receiver,
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"retrieve.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[0] == 0 ||
share_state->retrieved_fragment_count[0] >=
share_state->fragment_count) {
dlog_verbose(
"Retrieval of memory with handle %#x not yet started "
"or already completed (%d/%d fragments retrieved).\n",
handle, share_state->retrieved_fragment_count[0],
share_state->fragment_count);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
fragment_index = share_state->retrieved_fragment_count[0];
/*
* Check that the given fragment offset is correct by counting how many
* constituents were in the fragments previously sent.
*/
retrieved_constituents_count = 0;
for (i = 0; i < fragment_index; ++i) {
retrieved_constituents_count +=
share_state->fragment_constituent_counts[i];
}
expected_fragment_offset =
ffa_composite_constituent_offset(memory_region, 0) +
retrieved_constituents_count *
sizeof(struct ffa_memory_region_constituent);
if (fragment_offset != expected_fragment_offset) {
dlog_verbose("Fragment offset was %d but expected %d.\n",
fragment_offset, expected_fragment_offset);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
remaining_constituent_count = ffa_memory_fragment_init(
to_locked.vm->mailbox.recv, HF_MAILBOX_SIZE,
share_state->fragments[fragment_index],
share_state->fragment_constituent_counts[fragment_index],
&fragment_length);
CHECK(remaining_constituent_count == 0);
to_locked.vm->mailbox.recv_size = fragment_length;
to_locked.vm->mailbox.recv_sender = HF_HYPERVISOR_VM_ID;
to_locked.vm->mailbox.recv_func = FFA_MEM_FRAG_TX_32;
to_locked.vm->mailbox.state = MAILBOX_STATE_READ;
share_state->retrieved_fragment_count[0]++;
if (share_state->retrieved_fragment_count[0] ==
share_state->fragment_count) {
ffa_memory_retrieve_complete(share_states, share_state,
page_pool);
}
ret = (struct ffa_value){.func = FFA_MEM_FRAG_TX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = fragment_length};
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
struct ffa_value ffa_memory_relinquish(
struct vm_locked from_locked,
struct ffa_mem_relinquish *relinquish_request, struct mpool *page_pool)
{
ffa_memory_handle_t handle = relinquish_request->handle;
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
bool clear;
struct ffa_value ret;
if (relinquish_request->endpoint_count != 1) {
dlog_verbose(
"Stream endpoints not supported (got %d endpoints on "
"FFA_MEM_RELINQUISH, expected 1).\n",
relinquish_request->endpoint_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (relinquish_request->endpoints[0] != from_locked.vm->id) {
dlog_verbose(
"VM ID %d in relinquish message doesn't match calling "
"VM ID %d.\n",
relinquish_request->endpoints[0], from_locked.vm->id);
return ffa_error(FFA_INVALID_PARAMETERS);
}
dump_share_states();
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_RELINQUISH.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"relinquish.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (memory_region->receivers[0].receiver_permissions.receiver !=
from_locked.vm->id) {
dlog_verbose(
"VM ID %d tried to relinquish memory region with "
"handle %#x but receiver was %d.\n",
from_locked.vm->id, handle,
memory_region->receivers[0]
.receiver_permissions.receiver);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[0] !=
share_state->fragment_count) {
dlog_verbose(
"Memory with handle %#x not yet fully retrieved, can't "
"relinquish.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
clear = relinquish_request->flags & FFA_MEMORY_REGION_FLAG_CLEAR;
/*
* Clear is not allowed for memory that was shared, as the original
* sender still has access to the memory.
*/
if (clear && share_state->share_func == FFA_MEM_SHARE_32) {
dlog_verbose("Memory which was shared can't be cleared.\n");
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
ret = ffa_relinquish_check_update(
from_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, page_pool, clear);
if (ret.func == FFA_SUCCESS_32) {
/*
* Mark memory handle as not retrieved, so it can be reclaimed
* (or retrieved again).
*/
share_state->retrieved_fragment_count[0] = 0;
}
out:
share_states_unlock(&share_states);
dump_share_states();
return ret;
}
/**
* Validates that the reclaim transition is allowed for the given handle,
* updates the page table of the reclaiming VM, and frees the internal state
* associated with the handle.
*/
struct ffa_value ffa_memory_reclaim(struct vm_locked to_locked,
ffa_memory_handle_t handle,
ffa_memory_region_flags_t flags,
struct mpool *page_pool)
{
struct share_states_locked share_states;
struct ffa_memory_share_state *share_state;
struct ffa_memory_region *memory_region;
uint32_t memory_to_attributes = MM_MODE_R | MM_MODE_W | MM_MODE_X;
struct ffa_value ret;
dump_share_states();
share_states = share_states_lock();
if (!get_share_state(share_states, handle, &share_state)) {
dlog_verbose("Invalid handle %#x for FFA_MEM_RECLAIM.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
memory_region = share_state->memory_region;
CHECK(memory_region != NULL);
if (to_locked.vm->id != memory_region->sender) {
dlog_verbose(
"VM %d attempted to reclaim memory handle %#x "
"originally sent by VM %d.\n",
to_locked.vm->id, handle, memory_region->sender);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (!share_state->sending_complete) {
dlog_verbose(
"Memory with handle %#x not fully sent, can't "
"reclaim.\n",
handle);
ret = ffa_error(FFA_INVALID_PARAMETERS);
goto out;
}
if (share_state->retrieved_fragment_count[0] != 0) {
dlog_verbose(
"Tried to reclaim memory handle %#x that has not been "
"relinquished.\n",
handle);
ret = ffa_error(FFA_DENIED);
goto out;
}
ret = ffa_retrieve_check_update(
to_locked, share_state->fragments,
share_state->fragment_constituent_counts,
share_state->fragment_count, memory_to_attributes,
FFA_MEM_RECLAIM_32, flags & FFA_MEM_RECLAIM_CLEAR, page_pool);
if (ret.func == FFA_SUCCESS_32) {
share_state_free(share_states, share_state, page_pool);
dlog_verbose("Freed share state after successful reclaim.\n");
}
out:
share_states_unlock(&share_states);
return ret;
}
/**
* Validates that the reclaim transition is allowed for the memory region with
* the given handle which was previously shared with the TEE, tells the TEE to
* mark it as reclaimed, and updates the page table of the reclaiming VM.
*
* To do this information about the memory region is first fetched from the TEE.
*/
struct ffa_value ffa_memory_tee_reclaim(struct vm_locked to_locked,
struct vm_locked from_locked,
ffa_memory_handle_t handle,
ffa_memory_region_flags_t flags,
struct mpool *page_pool)
{
uint32_t request_length = ffa_memory_lender_retrieve_request_init(
from_locked.vm->mailbox.recv, handle, to_locked.vm->id);
struct ffa_value tee_ret;
uint32_t length;
uint32_t fragment_length;
uint32_t fragment_offset;
struct ffa_memory_region *memory_region;
struct ffa_composite_memory_region *composite;
uint32_t memory_to_attributes = MM_MODE_R | MM_MODE_W | MM_MODE_X;
CHECK(request_length <= HF_MAILBOX_SIZE);
CHECK(from_locked.vm->id == HF_TEE_VM_ID);
/* Retrieve memory region information from the TEE. */
tee_ret = arch_tee_call(
(struct ffa_value){.func = FFA_MEM_RETRIEVE_REQ_32,
.arg1 = request_length,
.arg2 = request_length});
if (tee_ret.func == FFA_ERROR_32) {
dlog_verbose("Got error %d from EL3.\n", tee_ret.arg2);
return tee_ret;
}
if (tee_ret.func != FFA_MEM_RETRIEVE_RESP_32) {
dlog_verbose(
"Got %#x from EL3, expected FFA_MEM_RETRIEVE_RESP.\n",
tee_ret.func);
return ffa_error(FFA_INVALID_PARAMETERS);
}
length = tee_ret.arg1;
fragment_length = tee_ret.arg2;
if (fragment_length > HF_MAILBOX_SIZE || fragment_length > length ||
length > sizeof(tee_retrieve_buffer)) {
dlog_verbose("Invalid fragment length %d/%d (max %d/%d).\n",
fragment_length, length, HF_MAILBOX_SIZE,
sizeof(tee_retrieve_buffer));
return ffa_error(FFA_INVALID_PARAMETERS);
}
/*
* Copy the first fragment of the memory region descriptor to an
* internal buffer.
*/
memcpy_s(tee_retrieve_buffer, sizeof(tee_retrieve_buffer),
from_locked.vm->mailbox.send, fragment_length);
/* Fetch the remaining fragments into the same buffer. */
fragment_offset = fragment_length;
while (fragment_offset < length) {
tee_ret = arch_tee_call(
(struct ffa_value){.func = FFA_MEM_FRAG_RX_32,
.arg1 = (uint32_t)handle,
.arg2 = (uint32_t)(handle >> 32),
.arg3 = fragment_offset});
if (tee_ret.func != FFA_MEM_FRAG_TX_32) {
dlog_verbose(
"Got %#x (%d) from TEE in response to "
"FFA_MEM_FRAG_RX, expected FFA_MEM_FRAG_TX.\n",
tee_ret.func, tee_ret.arg2);
return tee_ret;
}
if (ffa_frag_handle(tee_ret) != handle) {
dlog_verbose(
"Got FFA_MEM_FRAG_TX for unexpected handle %#x "
"in response to FFA_MEM_FRAG_RX for handle "
"%#x.\n",
ffa_frag_handle(tee_ret), handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (ffa_frag_sender(tee_ret) != 0) {
dlog_verbose(
"Got FFA_MEM_FRAG_TX with unexpected sender %d "
"(expected 0).\n",
ffa_frag_sender(tee_ret));
return ffa_error(FFA_INVALID_PARAMETERS);
}
fragment_length = tee_ret.arg3;
if (fragment_length > HF_MAILBOX_SIZE ||
fragment_offset + fragment_length > length) {
dlog_verbose(
"Invalid fragment length %d at offset %d (max "
"%d).\n",
fragment_length, fragment_offset,
HF_MAILBOX_SIZE);
return ffa_error(FFA_INVALID_PARAMETERS);
}
memcpy_s(tee_retrieve_buffer + fragment_offset,
sizeof(tee_retrieve_buffer) - fragment_offset,
from_locked.vm->mailbox.send, fragment_length);
fragment_offset += fragment_length;
}
memory_region = (struct ffa_memory_region *)tee_retrieve_buffer;
if (memory_region->receiver_count != 1) {
/* Only one receiver supported by Hafnium for now. */
dlog_verbose(
"Multiple recipients not supported (got %d, expected "
"1).\n",
memory_region->receiver_count);
return ffa_error(FFA_INVALID_PARAMETERS);
}
if (memory_region->handle != handle) {
dlog_verbose(
"Got memory region handle %#x from TEE but requested "
"handle %#x.\n",
memory_region->handle, handle);
return ffa_error(FFA_INVALID_PARAMETERS);
}
/* The original sender must match the caller. */
if (to_locked.vm->id != memory_region->sender) {
dlog_verbose(
"VM %d attempted to reclaim memory handle %#x "
"originally sent by VM %d.\n",
to_locked.vm->id, handle, memory_region->sender);
return ffa_error(FFA_INVALID_PARAMETERS);
}
composite = ffa_memory_region_get_composite(memory_region, 0);
/*
* Validate that the reclaim transition is allowed for the given memory
* region, forward the request to the TEE and then map the memory back
* into the caller's stage-2 page table.
*/
return ffa_tee_reclaim_check_update(
to_locked, handle, composite->constituents,
composite->constituent_count, memory_to_attributes,
flags & FFA_MEM_RECLAIM_CLEAR, page_pool);
}