| //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This is the generic implementation of LoopInfo used for both Loops and |
| // MachineLoops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H |
| #define LLVM_ANALYSIS_LOOPINFOIMPL_H |
| |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/Dominators.h" |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // APIs for simple analysis of the loop. See header notes. |
| |
| /// getExitingBlocks - Return all blocks inside the loop that have successors |
| /// outside of the loop. These are the blocks _inside of the current loop_ |
| /// which branch out. The returned list is always unique. |
| /// |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::getExitingBlocks( |
| SmallVectorImpl<BlockT *> &ExitingBlocks) const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| for (const auto BB : blocks()) |
| for (const auto &Succ : children<BlockT *>(BB)) |
| if (!contains(Succ)) { |
| // Not in current loop? It must be an exit block. |
| ExitingBlocks.push_back(BB); |
| break; |
| } |
| } |
| |
| /// getExitingBlock - If getExitingBlocks would return exactly one block, |
| /// return that block. Otherwise return null. |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| SmallVector<BlockT *, 8> ExitingBlocks; |
| getExitingBlocks(ExitingBlocks); |
| if (ExitingBlocks.size() == 1) |
| return ExitingBlocks[0]; |
| return nullptr; |
| } |
| |
| /// getExitBlocks - Return all of the successor blocks of this loop. These |
| /// are the blocks _outside of the current loop_ which are branched to. |
| /// |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::getExitBlocks( |
| SmallVectorImpl<BlockT *> &ExitBlocks) const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| for (const auto BB : blocks()) |
| for (const auto &Succ : children<BlockT *>(BB)) |
| if (!contains(Succ)) |
| // Not in current loop? It must be an exit block. |
| ExitBlocks.push_back(Succ); |
| } |
| |
| /// getExitBlock - If getExitBlocks would return exactly one block, |
| /// return that block. Otherwise return null. |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| SmallVector<BlockT *, 8> ExitBlocks; |
| getExitBlocks(ExitBlocks); |
| if (ExitBlocks.size() == 1) |
| return ExitBlocks[0]; |
| return nullptr; |
| } |
| |
| template <class BlockT, class LoopT> |
| bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const { |
| // Each predecessor of each exit block of a normal loop is contained |
| // within the loop. |
| SmallVector<BlockT *, 4> ExitBlocks; |
| getExitBlocks(ExitBlocks); |
| for (BlockT *EB : ExitBlocks) |
| for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB)) |
| if (!contains(Predecessor)) |
| return false; |
| // All the requirements are met. |
| return true; |
| } |
| |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::getUniqueExitBlocks( |
| SmallVectorImpl<BlockT *> &ExitBlocks) const { |
| typedef GraphTraits<BlockT *> BlockTraits; |
| typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits; |
| |
| assert(hasDedicatedExits() && |
| "getUniqueExitBlocks assumes the loop has canonical form exits!"); |
| |
| SmallVector<BlockT *, 32> SwitchExitBlocks; |
| for (BlockT *Block : this->blocks()) { |
| SwitchExitBlocks.clear(); |
| for (BlockT *Successor : children<BlockT *>(Block)) { |
| // If block is inside the loop then it is not an exit block. |
| if (contains(Successor)) |
| continue; |
| |
| BlockT *FirstPred = *InvBlockTraits::child_begin(Successor); |
| |
| // If current basic block is this exit block's first predecessor then only |
| // insert exit block in to the output ExitBlocks vector. This ensures that |
| // same exit block is not inserted twice into ExitBlocks vector. |
| if (Block != FirstPred) |
| continue; |
| |
| // If a terminator has more then two successors, for example SwitchInst, |
| // then it is possible that there are multiple edges from current block to |
| // one exit block. |
| if (std::distance(BlockTraits::child_begin(Block), |
| BlockTraits::child_end(Block)) <= 2) { |
| ExitBlocks.push_back(Successor); |
| continue; |
| } |
| |
| // In case of multiple edges from current block to exit block, collect |
| // only one edge in ExitBlocks. Use switchExitBlocks to keep track of |
| // duplicate edges. |
| if (!is_contained(SwitchExitBlocks, Successor)) { |
| SwitchExitBlocks.push_back(Successor); |
| ExitBlocks.push_back(Successor); |
| } |
| } |
| } |
| } |
| |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const { |
| SmallVector<BlockT *, 8> UniqueExitBlocks; |
| getUniqueExitBlocks(UniqueExitBlocks); |
| if (UniqueExitBlocks.size() == 1) |
| return UniqueExitBlocks[0]; |
| return nullptr; |
| } |
| |
| /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::getExitEdges( |
| SmallVectorImpl<Edge> &ExitEdges) const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| for (const auto BB : blocks()) |
| for (const auto &Succ : children<BlockT *>(BB)) |
| if (!contains(Succ)) |
| // Not in current loop? It must be an exit block. |
| ExitEdges.emplace_back(BB, Succ); |
| } |
| |
| /// getLoopPreheader - If there is a preheader for this loop, return it. A |
| /// loop has a preheader if there is only one edge to the header of the loop |
| /// from outside of the loop and it is legal to hoist instructions into the |
| /// predecessor. If this is the case, the block branching to the header of the |
| /// loop is the preheader node. |
| /// |
| /// This method returns null if there is no preheader for the loop. |
| /// |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| // Keep track of nodes outside the loop branching to the header... |
| BlockT *Out = getLoopPredecessor(); |
| if (!Out) |
| return nullptr; |
| |
| // Make sure we are allowed to hoist instructions into the predecessor. |
| if (!Out->isLegalToHoistInto()) |
| return nullptr; |
| |
| // Make sure there is only one exit out of the preheader. |
| typedef GraphTraits<BlockT *> BlockTraits; |
| typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out); |
| ++SI; |
| if (SI != BlockTraits::child_end(Out)) |
| return nullptr; // Multiple exits from the block, must not be a preheader. |
| |
| // The predecessor has exactly one successor, so it is a preheader. |
| return Out; |
| } |
| |
| /// getLoopPredecessor - If the given loop's header has exactly one unique |
| /// predecessor outside the loop, return it. Otherwise return null. |
| /// This is less strict that the loop "preheader" concept, which requires |
| /// the predecessor to have exactly one successor. |
| /// |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| // Keep track of nodes outside the loop branching to the header... |
| BlockT *Out = nullptr; |
| |
| // Loop over the predecessors of the header node... |
| BlockT *Header = getHeader(); |
| for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
| if (!contains(Pred)) { // If the block is not in the loop... |
| if (Out && Out != Pred) |
| return nullptr; // Multiple predecessors outside the loop |
| Out = Pred; |
| } |
| } |
| |
| // Make sure there is only one exit out of the preheader. |
| assert(Out && "Header of loop has no predecessors from outside loop?"); |
| return Out; |
| } |
| |
| /// getLoopLatch - If there is a single latch block for this loop, return it. |
| /// A latch block is a block that contains a branch back to the header. |
| template <class BlockT, class LoopT> |
| BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| BlockT *Header = getHeader(); |
| BlockT *Latch = nullptr; |
| for (const auto Pred : children<Inverse<BlockT *>>(Header)) { |
| if (contains(Pred)) { |
| if (Latch) |
| return nullptr; |
| Latch = Pred; |
| } |
| } |
| |
| return Latch; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // APIs for updating loop information after changing the CFG |
| // |
| |
| /// addBasicBlockToLoop - This method is used by other analyses to update loop |
| /// information. NewBB is set to be a new member of the current loop. |
| /// Because of this, it is added as a member of all parent loops, and is added |
| /// to the specified LoopInfo object as being in the current basic block. It |
| /// is not valid to replace the loop header with this method. |
| /// |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::addBasicBlockToLoop( |
| BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| #ifndef NDEBUG |
| if (!Blocks.empty()) { |
| auto SameHeader = LIB[getHeader()]; |
| assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() && |
| "Incorrect LI specified for this loop!"); |
| } |
| #endif |
| assert(NewBB && "Cannot add a null basic block to the loop!"); |
| assert(!LIB[NewBB] && "BasicBlock already in the loop!"); |
| |
| LoopT *L = static_cast<LoopT *>(this); |
| |
| // Add the loop mapping to the LoopInfo object... |
| LIB.BBMap[NewBB] = L; |
| |
| // Add the basic block to this loop and all parent loops... |
| while (L) { |
| L->addBlockEntry(NewBB); |
| L = L->getParentLoop(); |
| } |
| } |
| |
| /// replaceChildLoopWith - This is used when splitting loops up. It replaces |
| /// the OldChild entry in our children list with NewChild, and updates the |
| /// parent pointer of OldChild to be null and the NewChild to be this loop. |
| /// This updates the loop depth of the new child. |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild, |
| LoopT *NewChild) { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| assert(OldChild->ParentLoop == this && "This loop is already broken!"); |
| assert(!NewChild->ParentLoop && "NewChild already has a parent!"); |
| typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild); |
| assert(I != SubLoops.end() && "OldChild not in loop!"); |
| *I = NewChild; |
| OldChild->ParentLoop = nullptr; |
| NewChild->ParentLoop = static_cast<LoopT *>(this); |
| } |
| |
| /// verifyLoop - Verify loop structure |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::verifyLoop() const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| #ifndef NDEBUG |
| assert(!Blocks.empty() && "Loop header is missing"); |
| |
| // Setup for using a depth-first iterator to visit every block in the loop. |
| SmallVector<BlockT *, 8> ExitBBs; |
| getExitBlocks(ExitBBs); |
| df_iterator_default_set<BlockT *> VisitSet; |
| VisitSet.insert(ExitBBs.begin(), ExitBBs.end()); |
| df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>> |
| BI = df_ext_begin(getHeader(), VisitSet), |
| BE = df_ext_end(getHeader(), VisitSet); |
| |
| // Keep track of the BBs visited. |
| SmallPtrSet<BlockT *, 8> VisitedBBs; |
| |
| // Check the individual blocks. |
| for (; BI != BE; ++BI) { |
| BlockT *BB = *BI; |
| |
| assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB), |
| GraphTraits<BlockT *>::child_end(BB), |
| [&](BlockT *B) { return contains(B); }) && |
| "Loop block has no in-loop successors!"); |
| |
| assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
| GraphTraits<Inverse<BlockT *>>::child_end(BB), |
| [&](BlockT *B) { return contains(B); }) && |
| "Loop block has no in-loop predecessors!"); |
| |
| SmallVector<BlockT *, 2> OutsideLoopPreds; |
| std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB), |
| GraphTraits<Inverse<BlockT *>>::child_end(BB), |
| [&](BlockT *B) { |
| if (!contains(B)) |
| OutsideLoopPreds.push_back(B); |
| }); |
| |
| if (BB == getHeader()) { |
| assert(!OutsideLoopPreds.empty() && "Loop is unreachable!"); |
| } else if (!OutsideLoopPreds.empty()) { |
| // A non-header loop shouldn't be reachable from outside the loop, |
| // though it is permitted if the predecessor is not itself actually |
| // reachable. |
| BlockT *EntryBB = &BB->getParent()->front(); |
| for (BlockT *CB : depth_first(EntryBB)) |
| for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i) |
| assert(CB != OutsideLoopPreds[i] && |
| "Loop has multiple entry points!"); |
| } |
| assert(BB != &getHeader()->getParent()->front() && |
| "Loop contains function entry block!"); |
| |
| VisitedBBs.insert(BB); |
| } |
| |
| if (VisitedBBs.size() != getNumBlocks()) { |
| dbgs() << "The following blocks are unreachable in the loop: "; |
| for (auto BB : Blocks) { |
| if (!VisitedBBs.count(BB)) { |
| dbgs() << *BB << "\n"; |
| } |
| } |
| assert(false && "Unreachable block in loop"); |
| } |
| |
| // Check the subloops. |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| // Each block in each subloop should be contained within this loop. |
| for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end(); |
| BI != BE; ++BI) { |
| assert(contains(*BI) && |
| "Loop does not contain all the blocks of a subloop!"); |
| } |
| |
| // Check the parent loop pointer. |
| if (ParentLoop) { |
| assert(is_contained(*ParentLoop, this) && |
| "Loop is not a subloop of its parent!"); |
| } |
| #endif |
| } |
| |
| /// verifyLoop - Verify loop structure of this loop and all nested loops. |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::verifyLoopNest( |
| DenseSet<const LoopT *> *Loops) const { |
| assert(!isInvalid() && "Loop not in a valid state!"); |
| Loops->insert(static_cast<const LoopT *>(this)); |
| // Verify this loop. |
| verifyLoop(); |
| // Verify the subloops. |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| (*I)->verifyLoopNest(Loops); |
| } |
| |
| template <class BlockT, class LoopT> |
| void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth, |
| bool Verbose) const { |
| OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: "; |
| |
| BlockT *H = getHeader(); |
| for (unsigned i = 0; i < getBlocks().size(); ++i) { |
| BlockT *BB = getBlocks()[i]; |
| if (!Verbose) { |
| if (i) |
| OS << ","; |
| BB->printAsOperand(OS, false); |
| } else |
| OS << "\n"; |
| |
| if (BB == H) |
| OS << "<header>"; |
| if (isLoopLatch(BB)) |
| OS << "<latch>"; |
| if (isLoopExiting(BB)) |
| OS << "<exiting>"; |
| if (Verbose) |
| BB->print(OS); |
| } |
| OS << "\n"; |
| |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| (*I)->print(OS, Depth + 2); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the |
| /// result does / not depend on use list (block predecessor) order. |
| /// |
| |
| /// Discover a subloop with the specified backedges such that: All blocks within |
| /// this loop are mapped to this loop or a subloop. And all subloops within this |
| /// loop have their parent loop set to this loop or a subloop. |
| template <class BlockT, class LoopT> |
| static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges, |
| LoopInfoBase<BlockT, LoopT> *LI, |
| const DomTreeBase<BlockT> &DomTree) { |
| typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits; |
| |
| unsigned NumBlocks = 0; |
| unsigned NumSubloops = 0; |
| |
| // Perform a backward CFG traversal using a worklist. |
| std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end()); |
| while (!ReverseCFGWorklist.empty()) { |
| BlockT *PredBB = ReverseCFGWorklist.back(); |
| ReverseCFGWorklist.pop_back(); |
| |
| LoopT *Subloop = LI->getLoopFor(PredBB); |
| if (!Subloop) { |
| if (!DomTree.isReachableFromEntry(PredBB)) |
| continue; |
| |
| // This is an undiscovered block. Map it to the current loop. |
| LI->changeLoopFor(PredBB, L); |
| ++NumBlocks; |
| if (PredBB == L->getHeader()) |
| continue; |
| // Push all block predecessors on the worklist. |
| ReverseCFGWorklist.insert(ReverseCFGWorklist.end(), |
| InvBlockTraits::child_begin(PredBB), |
| InvBlockTraits::child_end(PredBB)); |
| } else { |
| // This is a discovered block. Find its outermost discovered loop. |
| while (LoopT *Parent = Subloop->getParentLoop()) |
| Subloop = Parent; |
| |
| // If it is already discovered to be a subloop of this loop, continue. |
| if (Subloop == L) |
| continue; |
| |
| // Discover a subloop of this loop. |
| Subloop->setParentLoop(L); |
| ++NumSubloops; |
| NumBlocks += Subloop->getBlocksVector().capacity(); |
| PredBB = Subloop->getHeader(); |
| // Continue traversal along predecessors that are not loop-back edges from |
| // within this subloop tree itself. Note that a predecessor may directly |
| // reach another subloop that is not yet discovered to be a subloop of |
| // this loop, which we must traverse. |
| for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) { |
| if (LI->getLoopFor(Pred) != Subloop) |
| ReverseCFGWorklist.push_back(Pred); |
| } |
| } |
| } |
| L->getSubLoopsVector().reserve(NumSubloops); |
| L->reserveBlocks(NumBlocks); |
| } |
| |
| /// Populate all loop data in a stable order during a single forward DFS. |
| template <class BlockT, class LoopT> class PopulateLoopsDFS { |
| typedef GraphTraits<BlockT *> BlockTraits; |
| typedef typename BlockTraits::ChildIteratorType SuccIterTy; |
| |
| LoopInfoBase<BlockT, LoopT> *LI; |
| |
| public: |
| PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {} |
| |
| void traverse(BlockT *EntryBlock); |
| |
| protected: |
| void insertIntoLoop(BlockT *Block); |
| }; |
| |
| /// Top-level driver for the forward DFS within the loop. |
| template <class BlockT, class LoopT> |
| void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) { |
| for (BlockT *BB : post_order(EntryBlock)) |
| insertIntoLoop(BB); |
| } |
| |
| /// Add a single Block to its ancestor loops in PostOrder. If the block is a |
| /// subloop header, add the subloop to its parent in PostOrder, then reverse the |
| /// Block and Subloop vectors of the now complete subloop to achieve RPO. |
| template <class BlockT, class LoopT> |
| void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) { |
| LoopT *Subloop = LI->getLoopFor(Block); |
| if (Subloop && Block == Subloop->getHeader()) { |
| // We reach this point once per subloop after processing all the blocks in |
| // the subloop. |
| if (Subloop->getParentLoop()) |
| Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop); |
| else |
| LI->addTopLevelLoop(Subloop); |
| |
| // For convenience, Blocks and Subloops are inserted in postorder. Reverse |
| // the lists, except for the loop header, which is always at the beginning. |
| Subloop->reverseBlock(1); |
| std::reverse(Subloop->getSubLoopsVector().begin(), |
| Subloop->getSubLoopsVector().end()); |
| |
| Subloop = Subloop->getParentLoop(); |
| } |
| for (; Subloop; Subloop = Subloop->getParentLoop()) |
| Subloop->addBlockEntry(Block); |
| } |
| |
| /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal |
| /// interleaved with backward CFG traversals within each subloop |
| /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so |
| /// this part of the algorithm is linear in the number of CFG edges. Subloop and |
| /// Block vectors are then populated during a single forward CFG traversal |
| /// (PopulateLoopDFS). |
| /// |
| /// During the two CFG traversals each block is seen three times: |
| /// 1) Discovered and mapped by a reverse CFG traversal. |
| /// 2) Visited during a forward DFS CFG traversal. |
| /// 3) Reverse-inserted in the loop in postorder following forward DFS. |
| /// |
| /// The Block vectors are inclusive, so step 3 requires loop-depth number of |
| /// insertions per block. |
| template <class BlockT, class LoopT> |
| void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) { |
| // Postorder traversal of the dominator tree. |
| const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode(); |
| for (auto DomNode : post_order(DomRoot)) { |
| |
| BlockT *Header = DomNode->getBlock(); |
| SmallVector<BlockT *, 4> Backedges; |
| |
| // Check each predecessor of the potential loop header. |
| for (const auto Backedge : children<Inverse<BlockT *>>(Header)) { |
| // If Header dominates predBB, this is a new loop. Collect the backedges. |
| if (DomTree.dominates(Header, Backedge) && |
| DomTree.isReachableFromEntry(Backedge)) { |
| Backedges.push_back(Backedge); |
| } |
| } |
| // Perform a backward CFG traversal to discover and map blocks in this loop. |
| if (!Backedges.empty()) { |
| LoopT *L = AllocateLoop(Header); |
| discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree); |
| } |
| } |
| // Perform a single forward CFG traversal to populate block and subloop |
| // vectors for all loops. |
| PopulateLoopsDFS<BlockT, LoopT> DFS(this); |
| DFS.traverse(DomRoot->getBlock()); |
| } |
| |
| template <class BlockT, class LoopT> |
| SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() { |
| SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
| // The outer-most loop actually goes into the result in the same relative |
| // order as we walk it. But LoopInfo stores the top level loops in reverse |
| // program order so for here we reverse it to get forward program order. |
| // FIXME: If we change the order of LoopInfo we will want to remove the |
| // reverse here. |
| for (LoopT *RootL : reverse(*this)) { |
| assert(PreOrderWorklist.empty() && |
| "Must start with an empty preorder walk worklist."); |
| PreOrderWorklist.push_back(RootL); |
| do { |
| LoopT *L = PreOrderWorklist.pop_back_val(); |
| // Sub-loops are stored in forward program order, but will process the |
| // worklist backwards so append them in reverse order. |
| PreOrderWorklist.append(L->rbegin(), L->rend()); |
| PreOrderLoops.push_back(L); |
| } while (!PreOrderWorklist.empty()); |
| } |
| |
| return PreOrderLoops; |
| } |
| |
| template <class BlockT, class LoopT> |
| SmallVector<LoopT *, 4> |
| LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() { |
| SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist; |
| // The outer-most loop actually goes into the result in the same relative |
| // order as we walk it. LoopInfo stores the top level loops in reverse |
| // program order so we walk in order here. |
| // FIXME: If we change the order of LoopInfo we will want to add a reverse |
| // here. |
| for (LoopT *RootL : *this) { |
| assert(PreOrderWorklist.empty() && |
| "Must start with an empty preorder walk worklist."); |
| PreOrderWorklist.push_back(RootL); |
| do { |
| LoopT *L = PreOrderWorklist.pop_back_val(); |
| // Sub-loops are stored in forward program order, but will process the |
| // worklist backwards so we can just append them in order. |
| PreOrderWorklist.append(L->begin(), L->end()); |
| PreOrderLoops.push_back(L); |
| } while (!PreOrderWorklist.empty()); |
| } |
| |
| return PreOrderLoops; |
| } |
| |
| // Debugging |
| template <class BlockT, class LoopT> |
| void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const { |
| for (unsigned i = 0; i < TopLevelLoops.size(); ++i) |
| TopLevelLoops[i]->print(OS); |
| #if 0 |
| for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(), |
| E = BBMap.end(); I != E; ++I) |
| OS << "BB '" << I->first->getName() << "' level = " |
| << I->second->getLoopDepth() << "\n"; |
| #endif |
| } |
| |
| template <typename T> |
| bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) { |
| llvm::sort(BB1); |
| llvm::sort(BB2); |
| return BB1 == BB2; |
| } |
| |
| template <class BlockT, class LoopT> |
| void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders, |
| const LoopInfoBase<BlockT, LoopT> &LI, |
| const LoopT &L) { |
| LoopHeaders[L.getHeader()] = &L; |
| for (LoopT *SL : L) |
| addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL); |
| } |
| |
| #ifndef NDEBUG |
| template <class BlockT, class LoopT> |
| static void compareLoops(const LoopT *L, const LoopT *OtherL, |
| DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) { |
| BlockT *H = L->getHeader(); |
| BlockT *OtherH = OtherL->getHeader(); |
| assert(H == OtherH && |
| "Mismatched headers even though found in the same map entry!"); |
| |
| assert(L->getLoopDepth() == OtherL->getLoopDepth() && |
| "Mismatched loop depth!"); |
| const LoopT *ParentL = L, *OtherParentL = OtherL; |
| do { |
| assert(ParentL->getHeader() == OtherParentL->getHeader() && |
| "Mismatched parent loop headers!"); |
| ParentL = ParentL->getParentLoop(); |
| OtherParentL = OtherParentL->getParentLoop(); |
| } while (ParentL); |
| |
| for (const LoopT *SubL : *L) { |
| BlockT *SubH = SubL->getHeader(); |
| const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH); |
| assert(OtherSubL && "Inner loop is missing in computed loop info!"); |
| OtherLoopHeaders.erase(SubH); |
| compareLoops(SubL, OtherSubL, OtherLoopHeaders); |
| } |
| |
| std::vector<BlockT *> BBs = L->getBlocks(); |
| std::vector<BlockT *> OtherBBs = OtherL->getBlocks(); |
| assert(compareVectors(BBs, OtherBBs) && |
| "Mismatched basic blocks in the loops!"); |
| |
| const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet(); |
| const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet(); |
| assert(BlocksSet.size() == OtherBlocksSet.size() && |
| std::all_of(BlocksSet.begin(), BlocksSet.end(), |
| [&OtherBlocksSet](const BlockT *BB) { |
| return OtherBlocksSet.count(BB); |
| }) && |
| "Mismatched basic blocks in BlocksSets!"); |
| } |
| #endif |
| |
| template <class BlockT, class LoopT> |
| void LoopInfoBase<BlockT, LoopT>::verify( |
| const DomTreeBase<BlockT> &DomTree) const { |
| DenseSet<const LoopT *> Loops; |
| for (iterator I = begin(), E = end(); I != E; ++I) { |
| assert(!(*I)->getParentLoop() && "Top-level loop has a parent!"); |
| (*I)->verifyLoopNest(&Loops); |
| } |
| |
| // Verify that blocks are mapped to valid loops. |
| #ifndef NDEBUG |
| for (auto &Entry : BBMap) { |
| const BlockT *BB = Entry.first; |
| LoopT *L = Entry.second; |
| assert(Loops.count(L) && "orphaned loop"); |
| assert(L->contains(BB) && "orphaned block"); |
| for (LoopT *ChildLoop : *L) |
| assert(!ChildLoop->contains(BB) && |
| "BBMap should point to the innermost loop containing BB"); |
| } |
| |
| // Recompute LoopInfo to verify loops structure. |
| LoopInfoBase<BlockT, LoopT> OtherLI; |
| OtherLI.analyze(DomTree); |
| |
| // Build a map we can use to move from our LI to the computed one. This |
| // allows us to ignore the particular order in any layer of the loop forest |
| // while still comparing the structure. |
| DenseMap<BlockT *, const LoopT *> OtherLoopHeaders; |
| for (LoopT *L : OtherLI) |
| addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L); |
| |
| // Walk the top level loops and ensure there is a corresponding top-level |
| // loop in the computed version and then recursively compare those loop |
| // nests. |
| for (LoopT *L : *this) { |
| BlockT *Header = L->getHeader(); |
| const LoopT *OtherL = OtherLoopHeaders.lookup(Header); |
| assert(OtherL && "Top level loop is missing in computed loop info!"); |
| // Now that we've matched this loop, erase its header from the map. |
| OtherLoopHeaders.erase(Header); |
| // And recursively compare these loops. |
| compareLoops(L, OtherL, OtherLoopHeaders); |
| } |
| |
| // Any remaining entries in the map are loops which were found when computing |
| // a fresh LoopInfo but not present in the current one. |
| if (!OtherLoopHeaders.empty()) { |
| for (const auto &HeaderAndLoop : OtherLoopHeaders) |
| dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n"; |
| llvm_unreachable("Found new loops when recomputing LoopInfo!"); |
| } |
| #endif |
| } |
| |
| } // End llvm namespace |
| |
| #endif |