| //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This pass exposes codegen information to IR-level passes. Every |
| /// transformation that uses codegen information is broken into three parts: |
| /// 1. The IR-level analysis pass. |
| /// 2. The IR-level transformation interface which provides the needed |
| /// information. |
| /// 3. Codegen-level implementation which uses target-specific hooks. |
| /// |
| /// This file defines #2, which is the interface that IR-level transformations |
| /// use for querying the codegen. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
| #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H |
| |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/DataTypes.h" |
| #include <functional> |
| |
| namespace llvm { |
| |
| namespace Intrinsic { |
| enum ID : unsigned; |
| } |
| |
| class Function; |
| class GlobalValue; |
| class IntrinsicInst; |
| class LoadInst; |
| class Loop; |
| class SCEV; |
| class ScalarEvolution; |
| class StoreInst; |
| class SwitchInst; |
| class Type; |
| class User; |
| class Value; |
| |
| /// Information about a load/store intrinsic defined by the target. |
| struct MemIntrinsicInfo { |
| /// This is the pointer that the intrinsic is loading from or storing to. |
| /// If this is non-null, then analysis/optimization passes can assume that |
| /// this intrinsic is functionally equivalent to a load/store from this |
| /// pointer. |
| Value *PtrVal = nullptr; |
| |
| // Ordering for atomic operations. |
| AtomicOrdering Ordering = AtomicOrdering::NotAtomic; |
| |
| // Same Id is set by the target for corresponding load/store intrinsics. |
| unsigned short MatchingId = 0; |
| |
| bool ReadMem = false; |
| bool WriteMem = false; |
| bool IsVolatile = false; |
| |
| bool isUnordered() const { |
| return (Ordering == AtomicOrdering::NotAtomic || |
| Ordering == AtomicOrdering::Unordered) && !IsVolatile; |
| } |
| }; |
| |
| /// This pass provides access to the codegen interfaces that are needed |
| /// for IR-level transformations. |
| class TargetTransformInfo { |
| public: |
| /// Construct a TTI object using a type implementing the \c Concept |
| /// API below. |
| /// |
| /// This is used by targets to construct a TTI wrapping their target-specific |
| /// implementaion that encodes appropriate costs for their target. |
| template <typename T> TargetTransformInfo(T Impl); |
| |
| /// Construct a baseline TTI object using a minimal implementation of |
| /// the \c Concept API below. |
| /// |
| /// The TTI implementation will reflect the information in the DataLayout |
| /// provided if non-null. |
| explicit TargetTransformInfo(const DataLayout &DL); |
| |
| // Provide move semantics. |
| TargetTransformInfo(TargetTransformInfo &&Arg); |
| TargetTransformInfo &operator=(TargetTransformInfo &&RHS); |
| |
| // We need to define the destructor out-of-line to define our sub-classes |
| // out-of-line. |
| ~TargetTransformInfo(); |
| |
| /// Handle the invalidation of this information. |
| /// |
| /// When used as a result of \c TargetIRAnalysis this method will be called |
| /// when the function this was computed for changes. When it returns false, |
| /// the information is preserved across those changes. |
| bool invalidate(Function &, const PreservedAnalyses &, |
| FunctionAnalysisManager::Invalidator &) { |
| // FIXME: We should probably in some way ensure that the subtarget |
| // information for a function hasn't changed. |
| return false; |
| } |
| |
| /// \name Generic Target Information |
| /// @{ |
| |
| /// The kind of cost model. |
| /// |
| /// There are several different cost models that can be customized by the |
| /// target. The normalization of each cost model may be target specific. |
| enum TargetCostKind { |
| TCK_RecipThroughput, ///< Reciprocal throughput. |
| TCK_Latency, ///< The latency of instruction. |
| TCK_CodeSize ///< Instruction code size. |
| }; |
| |
| /// Query the cost of a specified instruction. |
| /// |
| /// Clients should use this interface to query the cost of an existing |
| /// instruction. The instruction must have a valid parent (basic block). |
| /// |
| /// Note, this method does not cache the cost calculation and it |
| /// can be expensive in some cases. |
| int getInstructionCost(const Instruction *I, enum TargetCostKind kind) const { |
| switch (kind){ |
| case TCK_RecipThroughput: |
| return getInstructionThroughput(I); |
| |
| case TCK_Latency: |
| return getInstructionLatency(I); |
| |
| case TCK_CodeSize: |
| return getUserCost(I); |
| } |
| llvm_unreachable("Unknown instruction cost kind"); |
| } |
| |
| /// Underlying constants for 'cost' values in this interface. |
| /// |
| /// Many APIs in this interface return a cost. This enum defines the |
| /// fundamental values that should be used to interpret (and produce) those |
| /// costs. The costs are returned as an int rather than a member of this |
| /// enumeration because it is expected that the cost of one IR instruction |
| /// may have a multiplicative factor to it or otherwise won't fit directly |
| /// into the enum. Moreover, it is common to sum or average costs which works |
| /// better as simple integral values. Thus this enum only provides constants. |
| /// Also note that the returned costs are signed integers to make it natural |
| /// to add, subtract, and test with zero (a common boundary condition). It is |
| /// not expected that 2^32 is a realistic cost to be modeling at any point. |
| /// |
| /// Note that these costs should usually reflect the intersection of code-size |
| /// cost and execution cost. A free instruction is typically one that folds |
| /// into another instruction. For example, reg-to-reg moves can often be |
| /// skipped by renaming the registers in the CPU, but they still are encoded |
| /// and thus wouldn't be considered 'free' here. |
| enum TargetCostConstants { |
| TCC_Free = 0, ///< Expected to fold away in lowering. |
| TCC_Basic = 1, ///< The cost of a typical 'add' instruction. |
| TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. |
| }; |
| |
| /// Estimate the cost of a specific operation when lowered. |
| /// |
| /// Note that this is designed to work on an arbitrary synthetic opcode, and |
| /// thus work for hypothetical queries before an instruction has even been |
| /// formed. However, this does *not* work for GEPs, and must not be called |
| /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as |
| /// analyzing a GEP's cost required more information. |
| /// |
| /// Typically only the result type is required, and the operand type can be |
| /// omitted. However, if the opcode is one of the cast instructions, the |
| /// operand type is required. |
| /// |
| /// The returned cost is defined in terms of \c TargetCostConstants, see its |
| /// comments for a detailed explanation of the cost values. |
| int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const; |
| |
| /// Estimate the cost of a GEP operation when lowered. |
| /// |
| /// The contract for this function is the same as \c getOperationCost except |
| /// that it supports an interface that provides extra information specific to |
| /// the GEP operation. |
| int getGEPCost(Type *PointeeType, const Value *Ptr, |
| ArrayRef<const Value *> Operands) const; |
| |
| /// Estimate the cost of a EXT operation when lowered. |
| /// |
| /// The contract for this function is the same as \c getOperationCost except |
| /// that it supports an interface that provides extra information specific to |
| /// the EXT operation. |
| int getExtCost(const Instruction *I, const Value *Src) const; |
| |
| /// Estimate the cost of a function call when lowered. |
| /// |
| /// The contract for this is the same as \c getOperationCost except that it |
| /// supports an interface that provides extra information specific to call |
| /// instructions. |
| /// |
| /// This is the most basic query for estimating call cost: it only knows the |
| /// function type and (potentially) the number of arguments at the call site. |
| /// The latter is only interesting for varargs function types. |
| int getCallCost(FunctionType *FTy, int NumArgs = -1) const; |
| |
| /// Estimate the cost of calling a specific function when lowered. |
| /// |
| /// This overload adds the ability to reason about the particular function |
| /// being called in the event it is a library call with special lowering. |
| int getCallCost(const Function *F, int NumArgs = -1) const; |
| |
| /// Estimate the cost of calling a specific function when lowered. |
| /// |
| /// This overload allows specifying a set of candidate argument values. |
| int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const; |
| |
| /// \returns A value by which our inlining threshold should be multiplied. |
| /// This is primarily used to bump up the inlining threshold wholesale on |
| /// targets where calls are unusually expensive. |
| /// |
| /// TODO: This is a rather blunt instrument. Perhaps altering the costs of |
| /// individual classes of instructions would be better. |
| unsigned getInliningThresholdMultiplier() const; |
| |
| /// Estimate the cost of an intrinsic when lowered. |
| /// |
| /// Mirrors the \c getCallCost method but uses an intrinsic identifier. |
| int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Type *> ParamTys) const; |
| |
| /// Estimate the cost of an intrinsic when lowered. |
| /// |
| /// Mirrors the \c getCallCost method but uses an intrinsic identifier. |
| int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<const Value *> Arguments) const; |
| |
| /// \return The estimated number of case clusters when lowering \p 'SI'. |
| /// \p JTSize Set a jump table size only when \p SI is suitable for a jump |
| /// table. |
| unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| unsigned &JTSize) const; |
| |
| /// Estimate the cost of a given IR user when lowered. |
| /// |
| /// This can estimate the cost of either a ConstantExpr or Instruction when |
| /// lowered. It has two primary advantages over the \c getOperationCost and |
| /// \c getGEPCost above, and one significant disadvantage: it can only be |
| /// used when the IR construct has already been formed. |
| /// |
| /// The advantages are that it can inspect the SSA use graph to reason more |
| /// accurately about the cost. For example, all-constant-GEPs can often be |
| /// folded into a load or other instruction, but if they are used in some |
| /// other context they may not be folded. This routine can distinguish such |
| /// cases. |
| /// |
| /// \p Operands is a list of operands which can be a result of transformations |
| /// of the current operands. The number of the operands on the list must equal |
| /// to the number of the current operands the IR user has. Their order on the |
| /// list must be the same as the order of the current operands the IR user |
| /// has. |
| /// |
| /// The returned cost is defined in terms of \c TargetCostConstants, see its |
| /// comments for a detailed explanation of the cost values. |
| int getUserCost(const User *U, ArrayRef<const Value *> Operands) const; |
| |
| /// This is a helper function which calls the two-argument getUserCost |
| /// with \p Operands which are the current operands U has. |
| int getUserCost(const User *U) const { |
| SmallVector<const Value *, 4> Operands(U->value_op_begin(), |
| U->value_op_end()); |
| return getUserCost(U, Operands); |
| } |
| |
| /// Return true if branch divergence exists. |
| /// |
| /// Branch divergence has a significantly negative impact on GPU performance |
| /// when threads in the same wavefront take different paths due to conditional |
| /// branches. |
| bool hasBranchDivergence() const; |
| |
| /// Returns whether V is a source of divergence. |
| /// |
| /// This function provides the target-dependent information for |
| /// the target-independent LegacyDivergenceAnalysis. LegacyDivergenceAnalysis first |
| /// builds the dependency graph, and then runs the reachability algorithm |
| /// starting with the sources of divergence. |
| bool isSourceOfDivergence(const Value *V) const; |
| |
| // Returns true for the target specific |
| // set of operations which produce uniform result |
| // even taking non-unform arguments |
| bool isAlwaysUniform(const Value *V) const; |
| |
| /// Returns the address space ID for a target's 'flat' address space. Note |
| /// this is not necessarily the same as addrspace(0), which LLVM sometimes |
| /// refers to as the generic address space. The flat address space is a |
| /// generic address space that can be used access multiple segments of memory |
| /// with different address spaces. Access of a memory location through a |
| /// pointer with this address space is expected to be legal but slower |
| /// compared to the same memory location accessed through a pointer with a |
| /// different address space. |
| // |
| /// This is for targets with different pointer representations which can |
| /// be converted with the addrspacecast instruction. If a pointer is converted |
| /// to this address space, optimizations should attempt to replace the access |
| /// with the source address space. |
| /// |
| /// \returns ~0u if the target does not have such a flat address space to |
| /// optimize away. |
| unsigned getFlatAddressSpace() const; |
| |
| /// Test whether calls to a function lower to actual program function |
| /// calls. |
| /// |
| /// The idea is to test whether the program is likely to require a 'call' |
| /// instruction or equivalent in order to call the given function. |
| /// |
| /// FIXME: It's not clear that this is a good or useful query API. Client's |
| /// should probably move to simpler cost metrics using the above. |
| /// Alternatively, we could split the cost interface into distinct code-size |
| /// and execution-speed costs. This would allow modelling the core of this |
| /// query more accurately as a call is a single small instruction, but |
| /// incurs significant execution cost. |
| bool isLoweredToCall(const Function *F) const; |
| |
| struct LSRCost { |
| /// TODO: Some of these could be merged. Also, a lexical ordering |
| /// isn't always optimal. |
| unsigned Insns; |
| unsigned NumRegs; |
| unsigned AddRecCost; |
| unsigned NumIVMuls; |
| unsigned NumBaseAdds; |
| unsigned ImmCost; |
| unsigned SetupCost; |
| unsigned ScaleCost; |
| }; |
| |
| /// Parameters that control the generic loop unrolling transformation. |
| struct UnrollingPreferences { |
| /// The cost threshold for the unrolled loop. Should be relative to the |
| /// getUserCost values returned by this API, and the expectation is that |
| /// the unrolled loop's instructions when run through that interface should |
| /// not exceed this cost. However, this is only an estimate. Also, specific |
| /// loops may be unrolled even with a cost above this threshold if deemed |
| /// profitable. Set this to UINT_MAX to disable the loop body cost |
| /// restriction. |
| unsigned Threshold; |
| /// If complete unrolling will reduce the cost of the loop, we will boost |
| /// the Threshold by a certain percent to allow more aggressive complete |
| /// unrolling. This value provides the maximum boost percentage that we |
| /// can apply to Threshold (The value should be no less than 100). |
| /// BoostedThreshold = Threshold * min(RolledCost / UnrolledCost, |
| /// MaxPercentThresholdBoost / 100) |
| /// E.g. if complete unrolling reduces the loop execution time by 50% |
| /// then we boost the threshold by the factor of 2x. If unrolling is not |
| /// expected to reduce the running time, then we do not increase the |
| /// threshold. |
| unsigned MaxPercentThresholdBoost; |
| /// The cost threshold for the unrolled loop when optimizing for size (set |
| /// to UINT_MAX to disable). |
| unsigned OptSizeThreshold; |
| /// The cost threshold for the unrolled loop, like Threshold, but used |
| /// for partial/runtime unrolling (set to UINT_MAX to disable). |
| unsigned PartialThreshold; |
| /// The cost threshold for the unrolled loop when optimizing for size, like |
| /// OptSizeThreshold, but used for partial/runtime unrolling (set to |
| /// UINT_MAX to disable). |
| unsigned PartialOptSizeThreshold; |
| /// A forced unrolling factor (the number of concatenated bodies of the |
| /// original loop in the unrolled loop body). When set to 0, the unrolling |
| /// transformation will select an unrolling factor based on the current cost |
| /// threshold and other factors. |
| unsigned Count; |
| /// A forced peeling factor (the number of bodied of the original loop |
| /// that should be peeled off before the loop body). When set to 0, the |
| /// unrolling transformation will select a peeling factor based on profile |
| /// information and other factors. |
| unsigned PeelCount; |
| /// Default unroll count for loops with run-time trip count. |
| unsigned DefaultUnrollRuntimeCount; |
| // Set the maximum unrolling factor. The unrolling factor may be selected |
| // using the appropriate cost threshold, but may not exceed this number |
| // (set to UINT_MAX to disable). This does not apply in cases where the |
| // loop is being fully unrolled. |
| unsigned MaxCount; |
| /// Set the maximum unrolling factor for full unrolling. Like MaxCount, but |
| /// applies even if full unrolling is selected. This allows a target to fall |
| /// back to Partial unrolling if full unrolling is above FullUnrollMaxCount. |
| unsigned FullUnrollMaxCount; |
| // Represents number of instructions optimized when "back edge" |
| // becomes "fall through" in unrolled loop. |
| // For now we count a conditional branch on a backedge and a comparison |
| // feeding it. |
| unsigned BEInsns; |
| /// Allow partial unrolling (unrolling of loops to expand the size of the |
| /// loop body, not only to eliminate small constant-trip-count loops). |
| bool Partial; |
| /// Allow runtime unrolling (unrolling of loops to expand the size of the |
| /// loop body even when the number of loop iterations is not known at |
| /// compile time). |
| bool Runtime; |
| /// Allow generation of a loop remainder (extra iterations after unroll). |
| bool AllowRemainder; |
| /// Allow emitting expensive instructions (such as divisions) when computing |
| /// the trip count of a loop for runtime unrolling. |
| bool AllowExpensiveTripCount; |
| /// Apply loop unroll on any kind of loop |
| /// (mainly to loops that fail runtime unrolling). |
| bool Force; |
| /// Allow using trip count upper bound to unroll loops. |
| bool UpperBound; |
| /// Allow peeling off loop iterations for loops with low dynamic tripcount. |
| bool AllowPeeling; |
| /// Allow unrolling of all the iterations of the runtime loop remainder. |
| bool UnrollRemainder; |
| /// Allow unroll and jam. Used to enable unroll and jam for the target. |
| bool UnrollAndJam; |
| /// Threshold for unroll and jam, for inner loop size. The 'Threshold' |
| /// value above is used during unroll and jam for the outer loop size. |
| /// This value is used in the same manner to limit the size of the inner |
| /// loop. |
| unsigned UnrollAndJamInnerLoopThreshold; |
| }; |
| |
| /// Get target-customized preferences for the generic loop unrolling |
| /// transformation. The caller will initialize UP with the current |
| /// target-independent defaults. |
| void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
| UnrollingPreferences &UP) const; |
| |
| /// @} |
| |
| /// \name Scalar Target Information |
| /// @{ |
| |
| /// Flags indicating the kind of support for population count. |
| /// |
| /// Compared to the SW implementation, HW support is supposed to |
| /// significantly boost the performance when the population is dense, and it |
| /// may or may not degrade performance if the population is sparse. A HW |
| /// support is considered as "Fast" if it can outperform, or is on a par |
| /// with, SW implementation when the population is sparse; otherwise, it is |
| /// considered as "Slow". |
| enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; |
| |
| /// Return true if the specified immediate is legal add immediate, that |
| /// is the target has add instructions which can add a register with the |
| /// immediate without having to materialize the immediate into a register. |
| bool isLegalAddImmediate(int64_t Imm) const; |
| |
| /// Return true if the specified immediate is legal icmp immediate, |
| /// that is the target has icmp instructions which can compare a register |
| /// against the immediate without having to materialize the immediate into a |
| /// register. |
| bool isLegalICmpImmediate(int64_t Imm) const; |
| |
| /// Return true if the addressing mode represented by AM is legal for |
| /// this target, for a load/store of the specified type. |
| /// The type may be VoidTy, in which case only return true if the addressing |
| /// mode is legal for a load/store of any legal type. |
| /// If target returns true in LSRWithInstrQueries(), I may be valid. |
| /// TODO: Handle pre/postinc as well. |
| bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| unsigned AddrSpace = 0, |
| Instruction *I = nullptr) const; |
| |
| /// Return true if LSR cost of C1 is lower than C1. |
| bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| TargetTransformInfo::LSRCost &C2) const; |
| |
| /// Return true if the target can fuse a compare and branch. |
| /// Loop-strength-reduction (LSR) uses that knowledge to adjust its cost |
| /// calculation for the instructions in a loop. |
| bool canMacroFuseCmp() const; |
| |
| /// \return True is LSR should make efforts to create/preserve post-inc |
| /// addressing mode expressions. |
| bool shouldFavorPostInc() const; |
| |
| /// Return true if the target supports masked load/store |
| /// AVX2 and AVX-512 targets allow masks for consecutive load and store |
| bool isLegalMaskedStore(Type *DataType) const; |
| bool isLegalMaskedLoad(Type *DataType) const; |
| |
| /// Return true if the target supports masked gather/scatter |
| /// AVX-512 fully supports gather and scatter for vectors with 32 and 64 |
| /// bits scalar type. |
| bool isLegalMaskedScatter(Type *DataType) const; |
| bool isLegalMaskedGather(Type *DataType) const; |
| |
| /// Return true if the target has a unified operation to calculate division |
| /// and remainder. If so, the additional implicit multiplication and |
| /// subtraction required to calculate a remainder from division are free. This |
| /// can enable more aggressive transformations for division and remainder than |
| /// would typically be allowed using throughput or size cost models. |
| bool hasDivRemOp(Type *DataType, bool IsSigned) const; |
| |
| /// Return true if the given instruction (assumed to be a memory access |
| /// instruction) has a volatile variant. If that's the case then we can avoid |
| /// addrspacecast to generic AS for volatile loads/stores. Default |
| /// implementation returns false, which prevents address space inference for |
| /// volatile loads/stores. |
| bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) const; |
| |
| /// Return true if target doesn't mind addresses in vectors. |
| bool prefersVectorizedAddressing() const; |
| |
| /// Return the cost of the scaling factor used in the addressing |
| /// mode represented by AM for this target, for a load/store |
| /// of the specified type. |
| /// If the AM is supported, the return value must be >= 0. |
| /// If the AM is not supported, it returns a negative value. |
| /// TODO: Handle pre/postinc as well. |
| int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| unsigned AddrSpace = 0) const; |
| |
| /// Return true if the loop strength reduce pass should make |
| /// Instruction* based TTI queries to isLegalAddressingMode(). This is |
| /// needed on SystemZ, where e.g. a memcpy can only have a 12 bit unsigned |
| /// immediate offset and no index register. |
| bool LSRWithInstrQueries() const; |
| |
| /// Return true if it's free to truncate a value of type Ty1 to type |
| /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 |
| /// by referencing its sub-register AX. |
| bool isTruncateFree(Type *Ty1, Type *Ty2) const; |
| |
| /// Return true if it is profitable to hoist instruction in the |
| /// then/else to before if. |
| bool isProfitableToHoist(Instruction *I) const; |
| |
| bool useAA() const; |
| |
| /// Return true if this type is legal. |
| bool isTypeLegal(Type *Ty) const; |
| |
| /// Returns the target's jmp_buf alignment in bytes. |
| unsigned getJumpBufAlignment() const; |
| |
| /// Returns the target's jmp_buf size in bytes. |
| unsigned getJumpBufSize() const; |
| |
| /// Return true if switches should be turned into lookup tables for the |
| /// target. |
| bool shouldBuildLookupTables() const; |
| |
| /// Return true if switches should be turned into lookup tables |
| /// containing this constant value for the target. |
| bool shouldBuildLookupTablesForConstant(Constant *C) const; |
| |
| /// Return true if the input function which is cold at all call sites, |
| /// should use coldcc calling convention. |
| bool useColdCCForColdCall(Function &F) const; |
| |
| unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const; |
| |
| unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| unsigned VF) const; |
| |
| /// If target has efficient vector element load/store instructions, it can |
| /// return true here so that insertion/extraction costs are not added to |
| /// the scalarization cost of a load/store. |
| bool supportsEfficientVectorElementLoadStore() const; |
| |
| /// Don't restrict interleaved unrolling to small loops. |
| bool enableAggressiveInterleaving(bool LoopHasReductions) const; |
| |
| /// If not nullptr, enable inline expansion of memcmp. IsZeroCmp is |
| /// true if this is the expansion of memcmp(p1, p2, s) == 0. |
| struct MemCmpExpansionOptions { |
| // The list of available load sizes (in bytes), sorted in decreasing order. |
| SmallVector<unsigned, 8> LoadSizes; |
| }; |
| const MemCmpExpansionOptions *enableMemCmpExpansion(bool IsZeroCmp) const; |
| |
| /// Enable matching of interleaved access groups. |
| bool enableInterleavedAccessVectorization() const; |
| |
| /// Indicate that it is potentially unsafe to automatically vectorize |
| /// floating-point operations because the semantics of vector and scalar |
| /// floating-point semantics may differ. For example, ARM NEON v7 SIMD math |
| /// does not support IEEE-754 denormal numbers, while depending on the |
| /// platform, scalar floating-point math does. |
| /// This applies to floating-point math operations and calls, not memory |
| /// operations, shuffles, or casts. |
| bool isFPVectorizationPotentiallyUnsafe() const; |
| |
| /// Determine if the target supports unaligned memory accesses. |
| bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| unsigned BitWidth, unsigned AddressSpace = 0, |
| unsigned Alignment = 1, |
| bool *Fast = nullptr) const; |
| |
| /// Return hardware support for population count. |
| PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; |
| |
| /// Return true if the hardware has a fast square-root instruction. |
| bool haveFastSqrt(Type *Ty) const; |
| |
| /// Return true if it is faster to check if a floating-point value is NaN |
| /// (or not-NaN) versus a comparison against a constant FP zero value. |
| /// Targets should override this if materializing a 0.0 for comparison is |
| /// generally as cheap as checking for ordered/unordered. |
| bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) const; |
| |
| /// Return the expected cost of supporting the floating point operation |
| /// of the specified type. |
| int getFPOpCost(Type *Ty) const; |
| |
| /// Return the expected cost of materializing for the given integer |
| /// immediate of the specified type. |
| int getIntImmCost(const APInt &Imm, Type *Ty) const; |
| |
| /// Return the expected cost of materialization for the given integer |
| /// immediate of the specified type for a given instruction. The cost can be |
| /// zero if the immediate can be folded into the specified instruction. |
| int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) const; |
| int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| Type *Ty) const; |
| |
| /// Return the expected cost for the given integer when optimising |
| /// for size. This is different than the other integer immediate cost |
| /// functions in that it is subtarget agnostic. This is useful when you e.g. |
| /// target one ISA such as Aarch32 but smaller encodings could be possible |
| /// with another such as Thumb. This return value is used as a penalty when |
| /// the total costs for a constant is calculated (the bigger the cost, the |
| /// more beneficial constant hoisting is). |
| int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) const; |
| /// @} |
| |
| /// \name Vector Target Information |
| /// @{ |
| |
| /// The various kinds of shuffle patterns for vector queries. |
| enum ShuffleKind { |
| SK_Broadcast, ///< Broadcast element 0 to all other elements. |
| SK_Reverse, ///< Reverse the order of the vector. |
| SK_Select, ///< Selects elements from the corresponding lane of |
| ///< either source operand. This is equivalent to a |
| ///< vector select with a constant condition operand. |
| SK_Transpose, ///< Transpose two vectors. |
| SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. |
| SK_ExtractSubvector,///< ExtractSubvector Index indicates start offset. |
| SK_PermuteTwoSrc, ///< Merge elements from two source vectors into one |
| ///< with any shuffle mask. |
| SK_PermuteSingleSrc ///< Shuffle elements of single source vector with any |
| ///< shuffle mask. |
| }; |
| |
| /// Additional information about an operand's possible values. |
| enum OperandValueKind { |
| OK_AnyValue, // Operand can have any value. |
| OK_UniformValue, // Operand is uniform (splat of a value). |
| OK_UniformConstantValue, // Operand is uniform constant. |
| OK_NonUniformConstantValue // Operand is a non uniform constant value. |
| }; |
| |
| /// Additional properties of an operand's values. |
| enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 }; |
| |
| /// \return The number of scalar or vector registers that the target has. |
| /// If 'Vectors' is true, it returns the number of vector registers. If it is |
| /// set to false, it returns the number of scalar registers. |
| unsigned getNumberOfRegisters(bool Vector) const; |
| |
| /// \return The width of the largest scalar or vector register type. |
| unsigned getRegisterBitWidth(bool Vector) const; |
| |
| /// \return The width of the smallest vector register type. |
| unsigned getMinVectorRegisterBitWidth() const; |
| |
| /// \return True if the vectorization factor should be chosen to |
| /// make the vector of the smallest element type match the size of a |
| /// vector register. For wider element types, this could result in |
| /// creating vectors that span multiple vector registers. |
| /// If false, the vectorization factor will be chosen based on the |
| /// size of the widest element type. |
| bool shouldMaximizeVectorBandwidth(bool OptSize) const; |
| |
| /// \return The minimum vectorization factor for types of given element |
| /// bit width, or 0 if there is no mimimum VF. The returned value only |
| /// applies when shouldMaximizeVectorBandwidth returns true. |
| unsigned getMinimumVF(unsigned ElemWidth) const; |
| |
| /// \return True if it should be considered for address type promotion. |
| /// \p AllowPromotionWithoutCommonHeader Set true if promoting \p I is |
| /// profitable without finding other extensions fed by the same input. |
| bool shouldConsiderAddressTypePromotion( |
| const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const; |
| |
| /// \return The size of a cache line in bytes. |
| unsigned getCacheLineSize() const; |
| |
| /// The possible cache levels |
| enum class CacheLevel { |
| L1D, // The L1 data cache |
| L2D, // The L2 data cache |
| |
| // We currently do not model L3 caches, as their sizes differ widely between |
| // microarchitectures. Also, we currently do not have a use for L3 cache |
| // size modeling yet. |
| }; |
| |
| /// \return The size of the cache level in bytes, if available. |
| llvm::Optional<unsigned> getCacheSize(CacheLevel Level) const; |
| |
| /// \return The associativity of the cache level, if available. |
| llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) const; |
| |
| /// \return How much before a load we should place the prefetch instruction. |
| /// This is currently measured in number of instructions. |
| unsigned getPrefetchDistance() const; |
| |
| /// \return Some HW prefetchers can handle accesses up to a certain constant |
| /// stride. This is the minimum stride in bytes where it makes sense to start |
| /// adding SW prefetches. The default is 1, i.e. prefetch with any stride. |
| unsigned getMinPrefetchStride() const; |
| |
| /// \return The maximum number of iterations to prefetch ahead. If the |
| /// required number of iterations is more than this number, no prefetching is |
| /// performed. |
| unsigned getMaxPrefetchIterationsAhead() const; |
| |
| /// \return The maximum interleave factor that any transform should try to |
| /// perform for this target. This number depends on the level of parallelism |
| /// and the number of execution units in the CPU. |
| unsigned getMaxInterleaveFactor(unsigned VF) const; |
| |
| /// Collect properties of V used in cost analyzis, e.g. OP_PowerOf2. |
| OperandValueKind getOperandInfo(Value *V, |
| OperandValueProperties &OpProps) const; |
| |
| /// This is an approximation of reciprocal throughput of a math/logic op. |
| /// A higher cost indicates less expected throughput. |
| /// From Agner Fog's guides, reciprocal throughput is "the average number of |
| /// clock cycles per instruction when the instructions are not part of a |
| /// limiting dependency chain." |
| /// Therefore, costs should be scaled to account for multiple execution units |
| /// on the target that can process this type of instruction. For example, if |
| /// there are 5 scalar integer units and 2 vector integer units that can |
| /// calculate an 'add' in a single cycle, this model should indicate that the |
| /// cost of the vector add instruction is 2.5 times the cost of the scalar |
| /// add instruction. |
| /// \p Args is an optional argument which holds the instruction operands |
| /// values so the TTI can analyze those values searching for special |
| /// cases or optimizations based on those values. |
| int getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue, |
| OperandValueKind Opd2Info = OK_AnyValue, |
| OperandValueProperties Opd1PropInfo = OP_None, |
| OperandValueProperties Opd2PropInfo = OP_None, |
| ArrayRef<const Value *> Args = ArrayRef<const Value *>()) const; |
| |
| /// \return The cost of a shuffle instruction of kind Kind and of type Tp. |
| /// The index and subtype parameters are used by the subvector insertion and |
| /// extraction shuffle kinds. |
| int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0, |
| Type *SubTp = nullptr) const; |
| |
| /// \return The expected cost of cast instructions, such as bitcast, trunc, |
| /// zext, etc. If there is an existing instruction that holds Opcode, it |
| /// may be passed in the 'I' parameter. |
| int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I = nullptr) const; |
| |
| /// \return The expected cost of a sign- or zero-extended vector extract. Use |
| /// -1 to indicate that there is no information about the index value. |
| int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, |
| unsigned Index = -1) const; |
| |
| /// \return The expected cost of control-flow related instructions such as |
| /// Phi, Ret, Br. |
| int getCFInstrCost(unsigned Opcode) const; |
| |
| /// \returns The expected cost of compare and select instructions. If there |
| /// is an existing instruction that holds Opcode, it may be passed in the |
| /// 'I' parameter. |
| int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy = nullptr, const Instruction *I = nullptr) const; |
| |
| /// \return The expected cost of vector Insert and Extract. |
| /// Use -1 to indicate that there is no information on the index value. |
| int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const; |
| |
| /// \return The cost of Load and Store instructions. |
| int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I = nullptr) const; |
| |
| /// \return The cost of masked Load and Store instructions. |
| int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace) const; |
| |
| /// \return The cost of Gather or Scatter operation |
| /// \p Opcode - is a type of memory access Load or Store |
| /// \p DataTy - a vector type of the data to be loaded or stored |
| /// \p Ptr - pointer [or vector of pointers] - address[es] in memory |
| /// \p VariableMask - true when the memory access is predicated with a mask |
| /// that is not a compile-time constant |
| /// \p Alignment - alignment of single element |
| int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, Value *Ptr, |
| bool VariableMask, unsigned Alignment) const; |
| |
| /// \return The cost of the interleaved memory operation. |
| /// \p Opcode is the memory operation code |
| /// \p VecTy is the vector type of the interleaved access. |
| /// \p Factor is the interleave factor |
| /// \p Indices is the indices for interleaved load members (as interleaved |
| /// load allows gaps) |
| /// \p Alignment is the alignment of the memory operation |
| /// \p AddressSpace is address space of the pointer. |
| int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, |
| ArrayRef<unsigned> Indices, unsigned Alignment, |
| unsigned AddressSpace) const; |
| |
| /// Calculate the cost of performing a vector reduction. |
| /// |
| /// This is the cost of reducing the vector value of type \p Ty to a scalar |
| /// value using the operation denoted by \p Opcode. The form of the reduction |
| /// can either be a pairwise reduction or a reduction that splits the vector |
| /// at every reduction level. |
| /// |
| /// Pairwise: |
| /// (v0, v1, v2, v3) |
| /// ((v0+v1), (v2+v3), undef, undef) |
| /// Split: |
| /// (v0, v1, v2, v3) |
| /// ((v0+v2), (v1+v3), undef, undef) |
| int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| bool IsPairwiseForm) const; |
| int getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwiseForm, |
| bool IsUnsigned) const; |
| |
| /// \returns The cost of Intrinsic instructions. Analyses the real arguments. |
| /// Three cases are handled: 1. scalar instruction 2. vector instruction |
| /// 3. scalar instruction which is to be vectorized with VF. |
| int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| ArrayRef<Value *> Args, FastMathFlags FMF, |
| unsigned VF = 1) const; |
| |
| /// \returns The cost of Intrinsic instructions. Types analysis only. |
| /// If ScalarizationCostPassed is UINT_MAX, the cost of scalarizing the |
| /// arguments and the return value will be computed based on types. |
| int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| ArrayRef<Type *> Tys, FastMathFlags FMF, |
| unsigned ScalarizationCostPassed = UINT_MAX) const; |
| |
| /// \returns The cost of Call instructions. |
| int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const; |
| |
| /// \returns The number of pieces into which the provided type must be |
| /// split during legalization. Zero is returned when the answer is unknown. |
| unsigned getNumberOfParts(Type *Tp) const; |
| |
| /// \returns The cost of the address computation. For most targets this can be |
| /// merged into the instruction indexing mode. Some targets might want to |
| /// distinguish between address computation for memory operations on vector |
| /// types and scalar types. Such targets should override this function. |
| /// The 'SE' parameter holds pointer for the scalar evolution object which |
| /// is used in order to get the Ptr step value in case of constant stride. |
| /// The 'Ptr' parameter holds SCEV of the access pointer. |
| int getAddressComputationCost(Type *Ty, ScalarEvolution *SE = nullptr, |
| const SCEV *Ptr = nullptr) const; |
| |
| /// \returns The cost, if any, of keeping values of the given types alive |
| /// over a callsite. |
| /// |
| /// Some types may require the use of register classes that do not have |
| /// any callee-saved registers, so would require a spill and fill. |
| unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; |
| |
| /// \returns True if the intrinsic is a supported memory intrinsic. Info |
| /// will contain additional information - whether the intrinsic may write |
| /// or read to memory, volatility and the pointer. Info is undefined |
| /// if false is returned. |
| bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; |
| |
| /// \returns The maximum element size, in bytes, for an element |
| /// unordered-atomic memory intrinsic. |
| unsigned getAtomicMemIntrinsicMaxElementSize() const; |
| |
| /// \returns A value which is the result of the given memory intrinsic. New |
| /// instructions may be created to extract the result from the given intrinsic |
| /// memory operation. Returns nullptr if the target cannot create a result |
| /// from the given intrinsic. |
| Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| Type *ExpectedType) const; |
| |
| /// \returns The type to use in a loop expansion of a memcpy call. |
| Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| unsigned SrcAlign, unsigned DestAlign) const; |
| |
| /// \param[out] OpsOut The operand types to copy RemainingBytes of memory. |
| /// \param RemainingBytes The number of bytes to copy. |
| /// |
| /// Calculates the operand types to use when copying \p RemainingBytes of |
| /// memory, where source and destination alignments are \p SrcAlign and |
| /// \p DestAlign respectively. |
| void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, |
| LLVMContext &Context, |
| unsigned RemainingBytes, |
| unsigned SrcAlign, |
| unsigned DestAlign) const; |
| |
| /// \returns True if the two functions have compatible attributes for inlining |
| /// purposes. |
| bool areInlineCompatible(const Function *Caller, |
| const Function *Callee) const; |
| |
| /// The type of load/store indexing. |
| enum MemIndexedMode { |
| MIM_Unindexed, ///< No indexing. |
| MIM_PreInc, ///< Pre-incrementing. |
| MIM_PreDec, ///< Pre-decrementing. |
| MIM_PostInc, ///< Post-incrementing. |
| MIM_PostDec ///< Post-decrementing. |
| }; |
| |
| /// \returns True if the specified indexed load for the given type is legal. |
| bool isIndexedLoadLegal(enum MemIndexedMode Mode, Type *Ty) const; |
| |
| /// \returns True if the specified indexed store for the given type is legal. |
| bool isIndexedStoreLegal(enum MemIndexedMode Mode, Type *Ty) const; |
| |
| /// \returns The bitwidth of the largest vector type that should be used to |
| /// load/store in the given address space. |
| unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const; |
| |
| /// \returns True if the load instruction is legal to vectorize. |
| bool isLegalToVectorizeLoad(LoadInst *LI) const; |
| |
| /// \returns True if the store instruction is legal to vectorize. |
| bool isLegalToVectorizeStore(StoreInst *SI) const; |
| |
| /// \returns True if it is legal to vectorize the given load chain. |
| bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const; |
| |
| /// \returns True if it is legal to vectorize the given store chain. |
| bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const; |
| |
| /// \returns The new vector factor value if the target doesn't support \p |
| /// SizeInBytes loads or has a better vector factor. |
| unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const; |
| |
| /// \returns The new vector factor value if the target doesn't support \p |
| /// SizeInBytes stores or has a better vector factor. |
| unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const; |
| |
| /// Flags describing the kind of vector reduction. |
| struct ReductionFlags { |
| ReductionFlags() : IsMaxOp(false), IsSigned(false), NoNaN(false) {} |
| bool IsMaxOp; ///< If the op a min/max kind, true if it's a max operation. |
| bool IsSigned; ///< Whether the operation is a signed int reduction. |
| bool NoNaN; ///< If op is an fp min/max, whether NaNs may be present. |
| }; |
| |
| /// \returns True if the target wants to handle the given reduction idiom in |
| /// the intrinsics form instead of the shuffle form. |
| bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| ReductionFlags Flags) const; |
| |
| /// \returns True if the target wants to expand the given reduction intrinsic |
| /// into a shuffle sequence. |
| bool shouldExpandReduction(const IntrinsicInst *II) const; |
| /// @} |
| |
| private: |
| /// Estimate the latency of specified instruction. |
| /// Returns 1 as the default value. |
| int getInstructionLatency(const Instruction *I) const; |
| |
| /// Returns the expected throughput cost of the instruction. |
| /// Returns -1 if the cost is unknown. |
| int getInstructionThroughput(const Instruction *I) const; |
| |
| /// The abstract base class used to type erase specific TTI |
| /// implementations. |
| class Concept; |
| |
| /// The template model for the base class which wraps a concrete |
| /// implementation in a type erased interface. |
| template <typename T> class Model; |
| |
| std::unique_ptr<Concept> TTIImpl; |
| }; |
| |
| class TargetTransformInfo::Concept { |
| public: |
| virtual ~Concept() = 0; |
| virtual const DataLayout &getDataLayout() const = 0; |
| virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0; |
| virtual int getGEPCost(Type *PointeeType, const Value *Ptr, |
| ArrayRef<const Value *> Operands) = 0; |
| virtual int getExtCost(const Instruction *I, const Value *Src) = 0; |
| virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0; |
| virtual int getCallCost(const Function *F, int NumArgs) = 0; |
| virtual int getCallCost(const Function *F, |
| ArrayRef<const Value *> Arguments) = 0; |
| virtual unsigned getInliningThresholdMultiplier() = 0; |
| virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Type *> ParamTys) = 0; |
| virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<const Value *> Arguments) = 0; |
| virtual unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| unsigned &JTSize) = 0; |
| virtual int |
| getUserCost(const User *U, ArrayRef<const Value *> Operands) = 0; |
| virtual bool hasBranchDivergence() = 0; |
| virtual bool isSourceOfDivergence(const Value *V) = 0; |
| virtual bool isAlwaysUniform(const Value *V) = 0; |
| virtual unsigned getFlatAddressSpace() = 0; |
| virtual bool isLoweredToCall(const Function *F) = 0; |
| virtual void getUnrollingPreferences(Loop *L, ScalarEvolution &, |
| UnrollingPreferences &UP) = 0; |
| virtual bool isLegalAddImmediate(int64_t Imm) = 0; |
| virtual bool isLegalICmpImmediate(int64_t Imm) = 0; |
| virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, |
| int64_t BaseOffset, bool HasBaseReg, |
| int64_t Scale, |
| unsigned AddrSpace, |
| Instruction *I) = 0; |
| virtual bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| TargetTransformInfo::LSRCost &C2) = 0; |
| virtual bool canMacroFuseCmp() = 0; |
| virtual bool shouldFavorPostInc() const = 0; |
| virtual bool isLegalMaskedStore(Type *DataType) = 0; |
| virtual bool isLegalMaskedLoad(Type *DataType) = 0; |
| virtual bool isLegalMaskedScatter(Type *DataType) = 0; |
| virtual bool isLegalMaskedGather(Type *DataType) = 0; |
| virtual bool hasDivRemOp(Type *DataType, bool IsSigned) = 0; |
| virtual bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) = 0; |
| virtual bool prefersVectorizedAddressing() = 0; |
| virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, |
| int64_t BaseOffset, bool HasBaseReg, |
| int64_t Scale, unsigned AddrSpace) = 0; |
| virtual bool LSRWithInstrQueries() = 0; |
| virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; |
| virtual bool isProfitableToHoist(Instruction *I) = 0; |
| virtual bool useAA() = 0; |
| virtual bool isTypeLegal(Type *Ty) = 0; |
| virtual unsigned getJumpBufAlignment() = 0; |
| virtual unsigned getJumpBufSize() = 0; |
| virtual bool shouldBuildLookupTables() = 0; |
| virtual bool shouldBuildLookupTablesForConstant(Constant *C) = 0; |
| virtual bool useColdCCForColdCall(Function &F) = 0; |
| virtual unsigned |
| getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) = 0; |
| virtual unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| unsigned VF) = 0; |
| virtual bool supportsEfficientVectorElementLoadStore() = 0; |
| virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; |
| virtual const MemCmpExpansionOptions *enableMemCmpExpansion( |
| bool IsZeroCmp) const = 0; |
| virtual bool enableInterleavedAccessVectorization() = 0; |
| virtual bool isFPVectorizationPotentiallyUnsafe() = 0; |
| virtual bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| unsigned BitWidth, |
| unsigned AddressSpace, |
| unsigned Alignment, |
| bool *Fast) = 0; |
| virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; |
| virtual bool haveFastSqrt(Type *Ty) = 0; |
| virtual bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) = 0; |
| virtual int getFPOpCost(Type *Ty) = 0; |
| virtual int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) = 0; |
| virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0; |
| virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) = 0; |
| virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| Type *Ty) = 0; |
| virtual unsigned getNumberOfRegisters(bool Vector) = 0; |
| virtual unsigned getRegisterBitWidth(bool Vector) const = 0; |
| virtual unsigned getMinVectorRegisterBitWidth() = 0; |
| virtual bool shouldMaximizeVectorBandwidth(bool OptSize) const = 0; |
| virtual unsigned getMinimumVF(unsigned ElemWidth) const = 0; |
| virtual bool shouldConsiderAddressTypePromotion( |
| const Instruction &I, bool &AllowPromotionWithoutCommonHeader) = 0; |
| virtual unsigned getCacheLineSize() = 0; |
| virtual llvm::Optional<unsigned> getCacheSize(CacheLevel Level) = 0; |
| virtual llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) = 0; |
| virtual unsigned getPrefetchDistance() = 0; |
| virtual unsigned getMinPrefetchStride() = 0; |
| virtual unsigned getMaxPrefetchIterationsAhead() = 0; |
| virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; |
| virtual unsigned |
| getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, |
| OperandValueKind Opd2Info, |
| OperandValueProperties Opd1PropInfo, |
| OperandValueProperties Opd2PropInfo, |
| ArrayRef<const Value *> Args) = 0; |
| virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) = 0; |
| virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I) = 0; |
| virtual int getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
| VectorType *VecTy, unsigned Index) = 0; |
| virtual int getCFInstrCost(unsigned Opcode) = 0; |
| virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, |
| Type *CondTy, const Instruction *I) = 0; |
| virtual int getVectorInstrCost(unsigned Opcode, Type *Val, |
| unsigned Index) = 0; |
| virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I) = 0; |
| virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, |
| unsigned Alignment, |
| unsigned AddressSpace) = 0; |
| virtual int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
| Value *Ptr, bool VariableMask, |
| unsigned Alignment) = 0; |
| virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| unsigned Factor, |
| ArrayRef<unsigned> Indices, |
| unsigned Alignment, |
| unsigned AddressSpace) = 0; |
| virtual int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| bool IsPairwiseForm) = 0; |
| virtual int getMinMaxReductionCost(Type *Ty, Type *CondTy, |
| bool IsPairwiseForm, bool IsUnsigned) = 0; |
| virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| ArrayRef<Type *> Tys, FastMathFlags FMF, |
| unsigned ScalarizationCostPassed) = 0; |
| virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) = 0; |
| virtual int getCallInstrCost(Function *F, Type *RetTy, |
| ArrayRef<Type *> Tys) = 0; |
| virtual unsigned getNumberOfParts(Type *Tp) = 0; |
| virtual int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| const SCEV *Ptr) = 0; |
| virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; |
| virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
| MemIntrinsicInfo &Info) = 0; |
| virtual unsigned getAtomicMemIntrinsicMaxElementSize() const = 0; |
| virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| Type *ExpectedType) = 0; |
| virtual Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| unsigned SrcAlign, |
| unsigned DestAlign) const = 0; |
| virtual void getMemcpyLoopResidualLoweringType( |
| SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context, |
| unsigned RemainingBytes, unsigned SrcAlign, unsigned DestAlign) const = 0; |
| virtual bool areInlineCompatible(const Function *Caller, |
| const Function *Callee) const = 0; |
| virtual bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const = 0; |
| virtual bool isIndexedStoreLegal(MemIndexedMode Mode,Type *Ty) const = 0; |
| virtual unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const = 0; |
| virtual bool isLegalToVectorizeLoad(LoadInst *LI) const = 0; |
| virtual bool isLegalToVectorizeStore(StoreInst *SI) const = 0; |
| virtual bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const = 0; |
| virtual bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const = 0; |
| virtual unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const = 0; |
| virtual unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const = 0; |
| virtual bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| ReductionFlags) const = 0; |
| virtual bool shouldExpandReduction(const IntrinsicInst *II) const = 0; |
| virtual int getInstructionLatency(const Instruction *I) = 0; |
| }; |
| |
| template <typename T> |
| class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { |
| T Impl; |
| |
| public: |
| Model(T Impl) : Impl(std::move(Impl)) {} |
| ~Model() override {} |
| |
| const DataLayout &getDataLayout() const override { |
| return Impl.getDataLayout(); |
| } |
| |
| int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override { |
| return Impl.getOperationCost(Opcode, Ty, OpTy); |
| } |
| int getGEPCost(Type *PointeeType, const Value *Ptr, |
| ArrayRef<const Value *> Operands) override { |
| return Impl.getGEPCost(PointeeType, Ptr, Operands); |
| } |
| int getExtCost(const Instruction *I, const Value *Src) override { |
| return Impl.getExtCost(I, Src); |
| } |
| int getCallCost(FunctionType *FTy, int NumArgs) override { |
| return Impl.getCallCost(FTy, NumArgs); |
| } |
| int getCallCost(const Function *F, int NumArgs) override { |
| return Impl.getCallCost(F, NumArgs); |
| } |
| int getCallCost(const Function *F, |
| ArrayRef<const Value *> Arguments) override { |
| return Impl.getCallCost(F, Arguments); |
| } |
| unsigned getInliningThresholdMultiplier() override { |
| return Impl.getInliningThresholdMultiplier(); |
| } |
| int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Type *> ParamTys) override { |
| return Impl.getIntrinsicCost(IID, RetTy, ParamTys); |
| } |
| int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<const Value *> Arguments) override { |
| return Impl.getIntrinsicCost(IID, RetTy, Arguments); |
| } |
| int getUserCost(const User *U, ArrayRef<const Value *> Operands) override { |
| return Impl.getUserCost(U, Operands); |
| } |
| bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } |
| bool isSourceOfDivergence(const Value *V) override { |
| return Impl.isSourceOfDivergence(V); |
| } |
| |
| bool isAlwaysUniform(const Value *V) override { |
| return Impl.isAlwaysUniform(V); |
| } |
| |
| unsigned getFlatAddressSpace() override { |
| return Impl.getFlatAddressSpace(); |
| } |
| |
| bool isLoweredToCall(const Function *F) override { |
| return Impl.isLoweredToCall(F); |
| } |
| void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| UnrollingPreferences &UP) override { |
| return Impl.getUnrollingPreferences(L, SE, UP); |
| } |
| bool isLegalAddImmediate(int64_t Imm) override { |
| return Impl.isLegalAddImmediate(Imm); |
| } |
| bool isLegalICmpImmediate(int64_t Imm) override { |
| return Impl.isLegalICmpImmediate(Imm); |
| } |
| bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| unsigned AddrSpace, |
| Instruction *I) override { |
| return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, |
| Scale, AddrSpace, I); |
| } |
| bool isLSRCostLess(TargetTransformInfo::LSRCost &C1, |
| TargetTransformInfo::LSRCost &C2) override { |
| return Impl.isLSRCostLess(C1, C2); |
| } |
| bool canMacroFuseCmp() override { |
| return Impl.canMacroFuseCmp(); |
| } |
| bool shouldFavorPostInc() const override { |
| return Impl.shouldFavorPostInc(); |
| } |
| bool isLegalMaskedStore(Type *DataType) override { |
| return Impl.isLegalMaskedStore(DataType); |
| } |
| bool isLegalMaskedLoad(Type *DataType) override { |
| return Impl.isLegalMaskedLoad(DataType); |
| } |
| bool isLegalMaskedScatter(Type *DataType) override { |
| return Impl.isLegalMaskedScatter(DataType); |
| } |
| bool isLegalMaskedGather(Type *DataType) override { |
| return Impl.isLegalMaskedGather(DataType); |
| } |
| bool hasDivRemOp(Type *DataType, bool IsSigned) override { |
| return Impl.hasDivRemOp(DataType, IsSigned); |
| } |
| bool hasVolatileVariant(Instruction *I, unsigned AddrSpace) override { |
| return Impl.hasVolatileVariant(I, AddrSpace); |
| } |
| bool prefersVectorizedAddressing() override { |
| return Impl.prefersVectorizedAddressing(); |
| } |
| int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| unsigned AddrSpace) override { |
| return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, |
| Scale, AddrSpace); |
| } |
| bool LSRWithInstrQueries() override { |
| return Impl.LSRWithInstrQueries(); |
| } |
| bool isTruncateFree(Type *Ty1, Type *Ty2) override { |
| return Impl.isTruncateFree(Ty1, Ty2); |
| } |
| bool isProfitableToHoist(Instruction *I) override { |
| return Impl.isProfitableToHoist(I); |
| } |
| bool useAA() override { return Impl.useAA(); } |
| bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } |
| unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); } |
| unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); } |
| bool shouldBuildLookupTables() override { |
| return Impl.shouldBuildLookupTables(); |
| } |
| bool shouldBuildLookupTablesForConstant(Constant *C) override { |
| return Impl.shouldBuildLookupTablesForConstant(C); |
| } |
| bool useColdCCForColdCall(Function &F) override { |
| return Impl.useColdCCForColdCall(F); |
| } |
| |
| unsigned getScalarizationOverhead(Type *Ty, bool Insert, |
| bool Extract) override { |
| return Impl.getScalarizationOverhead(Ty, Insert, Extract); |
| } |
| unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| unsigned VF) override { |
| return Impl.getOperandsScalarizationOverhead(Args, VF); |
| } |
| |
| bool supportsEfficientVectorElementLoadStore() override { |
| return Impl.supportsEfficientVectorElementLoadStore(); |
| } |
| |
| bool enableAggressiveInterleaving(bool LoopHasReductions) override { |
| return Impl.enableAggressiveInterleaving(LoopHasReductions); |
| } |
| const MemCmpExpansionOptions *enableMemCmpExpansion( |
| bool IsZeroCmp) const override { |
| return Impl.enableMemCmpExpansion(IsZeroCmp); |
| } |
| bool enableInterleavedAccessVectorization() override { |
| return Impl.enableInterleavedAccessVectorization(); |
| } |
| bool isFPVectorizationPotentiallyUnsafe() override { |
| return Impl.isFPVectorizationPotentiallyUnsafe(); |
| } |
| bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| unsigned BitWidth, unsigned AddressSpace, |
| unsigned Alignment, bool *Fast) override { |
| return Impl.allowsMisalignedMemoryAccesses(Context, BitWidth, AddressSpace, |
| Alignment, Fast); |
| } |
| PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { |
| return Impl.getPopcntSupport(IntTyWidthInBit); |
| } |
| bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } |
| |
| bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) override { |
| return Impl.isFCmpOrdCheaperThanFCmpZero(Ty); |
| } |
| |
| int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); } |
| |
| int getIntImmCodeSizeCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) override { |
| return Impl.getIntImmCodeSizeCost(Opc, Idx, Imm, Ty); |
| } |
| int getIntImmCost(const APInt &Imm, Type *Ty) override { |
| return Impl.getIntImmCost(Imm, Ty); |
| } |
| int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, |
| Type *Ty) override { |
| return Impl.getIntImmCost(Opc, Idx, Imm, Ty); |
| } |
| int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, |
| Type *Ty) override { |
| return Impl.getIntImmCost(IID, Idx, Imm, Ty); |
| } |
| unsigned getNumberOfRegisters(bool Vector) override { |
| return Impl.getNumberOfRegisters(Vector); |
| } |
| unsigned getRegisterBitWidth(bool Vector) const override { |
| return Impl.getRegisterBitWidth(Vector); |
| } |
| unsigned getMinVectorRegisterBitWidth() override { |
| return Impl.getMinVectorRegisterBitWidth(); |
| } |
| bool shouldMaximizeVectorBandwidth(bool OptSize) const override { |
| return Impl.shouldMaximizeVectorBandwidth(OptSize); |
| } |
| unsigned getMinimumVF(unsigned ElemWidth) const override { |
| return Impl.getMinimumVF(ElemWidth); |
| } |
| bool shouldConsiderAddressTypePromotion( |
| const Instruction &I, bool &AllowPromotionWithoutCommonHeader) override { |
| return Impl.shouldConsiderAddressTypePromotion( |
| I, AllowPromotionWithoutCommonHeader); |
| } |
| unsigned getCacheLineSize() override { |
| return Impl.getCacheLineSize(); |
| } |
| llvm::Optional<unsigned> getCacheSize(CacheLevel Level) override { |
| return Impl.getCacheSize(Level); |
| } |
| llvm::Optional<unsigned> getCacheAssociativity(CacheLevel Level) override { |
| return Impl.getCacheAssociativity(Level); |
| } |
| unsigned getPrefetchDistance() override { return Impl.getPrefetchDistance(); } |
| unsigned getMinPrefetchStride() override { |
| return Impl.getMinPrefetchStride(); |
| } |
| unsigned getMaxPrefetchIterationsAhead() override { |
| return Impl.getMaxPrefetchIterationsAhead(); |
| } |
| unsigned getMaxInterleaveFactor(unsigned VF) override { |
| return Impl.getMaxInterleaveFactor(VF); |
| } |
| unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| unsigned &JTSize) override { |
| return Impl.getEstimatedNumberOfCaseClusters(SI, JTSize); |
| } |
| unsigned |
| getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, |
| OperandValueKind Opd2Info, |
| OperandValueProperties Opd1PropInfo, |
| OperandValueProperties Opd2PropInfo, |
| ArrayRef<const Value *> Args) override { |
| return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, |
| Opd1PropInfo, Opd2PropInfo, Args); |
| } |
| int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) override { |
| return Impl.getShuffleCost(Kind, Tp, Index, SubTp); |
| } |
| int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I) override { |
| return Impl.getCastInstrCost(Opcode, Dst, Src, I); |
| } |
| int getExtractWithExtendCost(unsigned Opcode, Type *Dst, VectorType *VecTy, |
| unsigned Index) override { |
| return Impl.getExtractWithExtendCost(Opcode, Dst, VecTy, Index); |
| } |
| int getCFInstrCost(unsigned Opcode) override { |
| return Impl.getCFInstrCost(Opcode); |
| } |
| int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| const Instruction *I) override { |
| return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy, I); |
| } |
| int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override { |
| return Impl.getVectorInstrCost(Opcode, Val, Index); |
| } |
| int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I) override { |
| return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, I); |
| } |
| int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace) override { |
| return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); |
| } |
| int getGatherScatterOpCost(unsigned Opcode, Type *DataTy, |
| Value *Ptr, bool VariableMask, |
| unsigned Alignment) override { |
| return Impl.getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask, |
| Alignment); |
| } |
| int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, |
| ArrayRef<unsigned> Indices, unsigned Alignment, |
| unsigned AddressSpace) override { |
| return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, |
| Alignment, AddressSpace); |
| } |
| int getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| bool IsPairwiseForm) override { |
| return Impl.getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm); |
| } |
| int getMinMaxReductionCost(Type *Ty, Type *CondTy, |
| bool IsPairwiseForm, bool IsUnsigned) override { |
| return Impl.getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned); |
| } |
| int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, ArrayRef<Type *> Tys, |
| FastMathFlags FMF, unsigned ScalarizationCostPassed) override { |
| return Impl.getIntrinsicInstrCost(ID, RetTy, Tys, FMF, |
| ScalarizationCostPassed); |
| } |
| int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, |
| ArrayRef<Value *> Args, FastMathFlags FMF, unsigned VF) override { |
| return Impl.getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF); |
| } |
| int getCallInstrCost(Function *F, Type *RetTy, |
| ArrayRef<Type *> Tys) override { |
| return Impl.getCallInstrCost(F, RetTy, Tys); |
| } |
| unsigned getNumberOfParts(Type *Tp) override { |
| return Impl.getNumberOfParts(Tp); |
| } |
| int getAddressComputationCost(Type *Ty, ScalarEvolution *SE, |
| const SCEV *Ptr) override { |
| return Impl.getAddressComputationCost(Ty, SE, Ptr); |
| } |
| unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { |
| return Impl.getCostOfKeepingLiveOverCall(Tys); |
| } |
| bool getTgtMemIntrinsic(IntrinsicInst *Inst, |
| MemIntrinsicInfo &Info) override { |
| return Impl.getTgtMemIntrinsic(Inst, Info); |
| } |
| unsigned getAtomicMemIntrinsicMaxElementSize() const override { |
| return Impl.getAtomicMemIntrinsicMaxElementSize(); |
| } |
| Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, |
| Type *ExpectedType) override { |
| return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); |
| } |
| Type *getMemcpyLoopLoweringType(LLVMContext &Context, Value *Length, |
| unsigned SrcAlign, |
| unsigned DestAlign) const override { |
| return Impl.getMemcpyLoopLoweringType(Context, Length, SrcAlign, DestAlign); |
| } |
| void getMemcpyLoopResidualLoweringType(SmallVectorImpl<Type *> &OpsOut, |
| LLVMContext &Context, |
| unsigned RemainingBytes, |
| unsigned SrcAlign, |
| unsigned DestAlign) const override { |
| Impl.getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes, |
| SrcAlign, DestAlign); |
| } |
| bool areInlineCompatible(const Function *Caller, |
| const Function *Callee) const override { |
| return Impl.areInlineCompatible(Caller, Callee); |
| } |
| bool isIndexedLoadLegal(MemIndexedMode Mode, Type *Ty) const override { |
| return Impl.isIndexedLoadLegal(Mode, Ty, getDataLayout()); |
| } |
| bool isIndexedStoreLegal(MemIndexedMode Mode, Type *Ty) const override { |
| return Impl.isIndexedStoreLegal(Mode, Ty, getDataLayout()); |
| } |
| unsigned getLoadStoreVecRegBitWidth(unsigned AddrSpace) const override { |
| return Impl.getLoadStoreVecRegBitWidth(AddrSpace); |
| } |
| bool isLegalToVectorizeLoad(LoadInst *LI) const override { |
| return Impl.isLegalToVectorizeLoad(LI); |
| } |
| bool isLegalToVectorizeStore(StoreInst *SI) const override { |
| return Impl.isLegalToVectorizeStore(SI); |
| } |
| bool isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const override { |
| return Impl.isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment, |
| AddrSpace); |
| } |
| bool isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes, |
| unsigned Alignment, |
| unsigned AddrSpace) const override { |
| return Impl.isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment, |
| AddrSpace); |
| } |
| unsigned getLoadVectorFactor(unsigned VF, unsigned LoadSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const override { |
| return Impl.getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy); |
| } |
| unsigned getStoreVectorFactor(unsigned VF, unsigned StoreSize, |
| unsigned ChainSizeInBytes, |
| VectorType *VecTy) const override { |
| return Impl.getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy); |
| } |
| bool useReductionIntrinsic(unsigned Opcode, Type *Ty, |
| ReductionFlags Flags) const override { |
| return Impl.useReductionIntrinsic(Opcode, Ty, Flags); |
| } |
| bool shouldExpandReduction(const IntrinsicInst *II) const override { |
| return Impl.shouldExpandReduction(II); |
| } |
| int getInstructionLatency(const Instruction *I) override { |
| return Impl.getInstructionLatency(I); |
| } |
| }; |
| |
| template <typename T> |
| TargetTransformInfo::TargetTransformInfo(T Impl) |
| : TTIImpl(new Model<T>(Impl)) {} |
| |
| /// Analysis pass providing the \c TargetTransformInfo. |
| /// |
| /// The core idea of the TargetIRAnalysis is to expose an interface through |
| /// which LLVM targets can analyze and provide information about the middle |
| /// end's target-independent IR. This supports use cases such as target-aware |
| /// cost modeling of IR constructs. |
| /// |
| /// This is a function analysis because much of the cost modeling for targets |
| /// is done in a subtarget specific way and LLVM supports compiling different |
| /// functions targeting different subtargets in order to support runtime |
| /// dispatch according to the observed subtarget. |
| class TargetIRAnalysis : public AnalysisInfoMixin<TargetIRAnalysis> { |
| public: |
| typedef TargetTransformInfo Result; |
| |
| /// Default construct a target IR analysis. |
| /// |
| /// This will use the module's datalayout to construct a baseline |
| /// conservative TTI result. |
| TargetIRAnalysis(); |
| |
| /// Construct an IR analysis pass around a target-provide callback. |
| /// |
| /// The callback will be called with a particular function for which the TTI |
| /// is needed and must return a TTI object for that function. |
| TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); |
| |
| // Value semantics. We spell out the constructors for MSVC. |
| TargetIRAnalysis(const TargetIRAnalysis &Arg) |
| : TTICallback(Arg.TTICallback) {} |
| TargetIRAnalysis(TargetIRAnalysis &&Arg) |
| : TTICallback(std::move(Arg.TTICallback)) {} |
| TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { |
| TTICallback = RHS.TTICallback; |
| return *this; |
| } |
| TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { |
| TTICallback = std::move(RHS.TTICallback); |
| return *this; |
| } |
| |
| Result run(const Function &F, FunctionAnalysisManager &); |
| |
| private: |
| friend AnalysisInfoMixin<TargetIRAnalysis>; |
| static AnalysisKey Key; |
| |
| /// The callback used to produce a result. |
| /// |
| /// We use a completely opaque callback so that targets can provide whatever |
| /// mechanism they desire for constructing the TTI for a given function. |
| /// |
| /// FIXME: Should we really use std::function? It's relatively inefficient. |
| /// It might be possible to arrange for even stateful callbacks to outlive |
| /// the analysis and thus use a function_ref which would be lighter weight. |
| /// This may also be less error prone as the callback is likely to reference |
| /// the external TargetMachine, and that reference needs to never dangle. |
| std::function<Result(const Function &)> TTICallback; |
| |
| /// Helper function used as the callback in the default constructor. |
| static Result getDefaultTTI(const Function &F); |
| }; |
| |
| /// Wrapper pass for TargetTransformInfo. |
| /// |
| /// This pass can be constructed from a TTI object which it stores internally |
| /// and is queried by passes. |
| class TargetTransformInfoWrapperPass : public ImmutablePass { |
| TargetIRAnalysis TIRA; |
| Optional<TargetTransformInfo> TTI; |
| |
| virtual void anchor(); |
| |
| public: |
| static char ID; |
| |
| /// We must provide a default constructor for the pass but it should |
| /// never be used. |
| /// |
| /// Use the constructor below or call one of the creation routines. |
| TargetTransformInfoWrapperPass(); |
| |
| explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
| |
| TargetTransformInfo &getTTI(const Function &F); |
| }; |
| |
| /// Create an analysis pass wrapper around a TTI object. |
| /// |
| /// This analysis pass just holds the TTI instance and makes it available to |
| /// clients. |
| ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); |
| |
| } // End llvm namespace |
| |
| #endif |