| //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines layout properties related to datatype size/offset/alignment |
| // information. It uses lazy annotations to cache information about how |
| // structure types are laid out and used. |
| // |
| // This structure should be created once, filled in if the defaults are not |
| // correct and then passed around by const&. None of the members functions |
| // require modification to the object. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_IR_DATALAYOUT_H |
| #define LLVM_IR_DATALAYOUT_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| |
| // This needs to be outside of the namespace, to avoid conflict with llvm-c |
| // decl. |
| using LLVMTargetDataRef = struct LLVMOpaqueTargetData *; |
| |
| namespace llvm { |
| |
| class GlobalVariable; |
| class LLVMContext; |
| class Module; |
| class StructLayout; |
| class Triple; |
| class Value; |
| |
| /// Enum used to categorize the alignment types stored by LayoutAlignElem |
| enum AlignTypeEnum { |
| INVALID_ALIGN = 0, |
| INTEGER_ALIGN = 'i', |
| VECTOR_ALIGN = 'v', |
| FLOAT_ALIGN = 'f', |
| AGGREGATE_ALIGN = 'a' |
| }; |
| |
| // FIXME: Currently the DataLayout string carries a "preferred alignment" |
| // for types. As the DataLayout is module/global, this should likely be |
| // sunk down to an FTTI element that is queried rather than a global |
| // preference. |
| |
| /// Layout alignment element. |
| /// |
| /// Stores the alignment data associated with a given alignment type (integer, |
| /// vector, float) and type bit width. |
| /// |
| /// \note The unusual order of elements in the structure attempts to reduce |
| /// padding and make the structure slightly more cache friendly. |
| struct LayoutAlignElem { |
| /// Alignment type from \c AlignTypeEnum |
| unsigned AlignType : 8; |
| unsigned TypeBitWidth : 24; |
| unsigned ABIAlign : 16; |
| unsigned PrefAlign : 16; |
| |
| static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align, |
| unsigned pref_align, uint32_t bit_width); |
| |
| bool operator==(const LayoutAlignElem &rhs) const; |
| }; |
| |
| /// Layout pointer alignment element. |
| /// |
| /// Stores the alignment data associated with a given pointer and address space. |
| /// |
| /// \note The unusual order of elements in the structure attempts to reduce |
| /// padding and make the structure slightly more cache friendly. |
| struct PointerAlignElem { |
| unsigned ABIAlign; |
| unsigned PrefAlign; |
| uint32_t TypeByteWidth; |
| uint32_t AddressSpace; |
| uint32_t IndexWidth; |
| |
| /// Initializer |
| static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign, |
| unsigned PrefAlign, uint32_t TypeByteWidth, |
| uint32_t IndexWidth); |
| |
| bool operator==(const PointerAlignElem &rhs) const; |
| }; |
| |
| /// A parsed version of the target data layout string in and methods for |
| /// querying it. |
| /// |
| /// The target data layout string is specified *by the target* - a frontend |
| /// generating LLVM IR is required to generate the right target data for the |
| /// target being codegen'd to. |
| class DataLayout { |
| private: |
| /// Defaults to false. |
| bool BigEndian; |
| |
| unsigned AllocaAddrSpace; |
| unsigned StackNaturalAlign; |
| unsigned ProgramAddrSpace; |
| |
| enum ManglingModeT { |
| MM_None, |
| MM_ELF, |
| MM_MachO, |
| MM_WinCOFF, |
| MM_WinCOFFX86, |
| MM_Mips |
| }; |
| ManglingModeT ManglingMode; |
| |
| SmallVector<unsigned char, 8> LegalIntWidths; |
| |
| /// Primitive type alignment data. This is sorted by type and bit |
| /// width during construction. |
| using AlignmentsTy = SmallVector<LayoutAlignElem, 16>; |
| AlignmentsTy Alignments; |
| |
| AlignmentsTy::const_iterator |
| findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const { |
| return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType, |
| BitWidth); |
| } |
| |
| AlignmentsTy::iterator |
| findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth); |
| |
| /// The string representation used to create this DataLayout |
| std::string StringRepresentation; |
| |
| using PointersTy = SmallVector<PointerAlignElem, 8>; |
| PointersTy Pointers; |
| |
| PointersTy::const_iterator |
| findPointerLowerBound(uint32_t AddressSpace) const { |
| return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace); |
| } |
| |
| PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace); |
| |
| // The StructType -> StructLayout map. |
| mutable void *LayoutMap = nullptr; |
| |
| /// Pointers in these address spaces are non-integral, and don't have a |
| /// well-defined bitwise representation. |
| SmallVector<unsigned, 8> NonIntegralAddressSpaces; |
| |
| void setAlignment(AlignTypeEnum align_type, unsigned abi_align, |
| unsigned pref_align, uint32_t bit_width); |
| unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width, |
| bool ABIAlign, Type *Ty) const; |
| void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign, |
| unsigned PrefAlign, uint32_t TypeByteWidth, |
| uint32_t IndexWidth); |
| |
| /// Internal helper method that returns requested alignment for type. |
| unsigned getAlignment(Type *Ty, bool abi_or_pref) const; |
| |
| /// Parses a target data specification string. Assert if the string is |
| /// malformed. |
| void parseSpecifier(StringRef LayoutDescription); |
| |
| // Free all internal data structures. |
| void clear(); |
| |
| public: |
| /// Constructs a DataLayout from a specification string. See reset(). |
| explicit DataLayout(StringRef LayoutDescription) { |
| reset(LayoutDescription); |
| } |
| |
| /// Initialize target data from properties stored in the module. |
| explicit DataLayout(const Module *M); |
| |
| DataLayout(const DataLayout &DL) { *this = DL; } |
| |
| ~DataLayout(); // Not virtual, do not subclass this class |
| |
| DataLayout &operator=(const DataLayout &DL) { |
| clear(); |
| StringRepresentation = DL.StringRepresentation; |
| BigEndian = DL.isBigEndian(); |
| AllocaAddrSpace = DL.AllocaAddrSpace; |
| StackNaturalAlign = DL.StackNaturalAlign; |
| ProgramAddrSpace = DL.ProgramAddrSpace; |
| ManglingMode = DL.ManglingMode; |
| LegalIntWidths = DL.LegalIntWidths; |
| Alignments = DL.Alignments; |
| Pointers = DL.Pointers; |
| NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces; |
| return *this; |
| } |
| |
| bool operator==(const DataLayout &Other) const; |
| bool operator!=(const DataLayout &Other) const { return !(*this == Other); } |
| |
| void init(const Module *M); |
| |
| /// Parse a data layout string (with fallback to default values). |
| void reset(StringRef LayoutDescription); |
| |
| /// Layout endianness... |
| bool isLittleEndian() const { return !BigEndian; } |
| bool isBigEndian() const { return BigEndian; } |
| |
| /// Returns the string representation of the DataLayout. |
| /// |
| /// This representation is in the same format accepted by the string |
| /// constructor above. This should not be used to compare two DataLayout as |
| /// different string can represent the same layout. |
| const std::string &getStringRepresentation() const { |
| return StringRepresentation; |
| } |
| |
| /// Test if the DataLayout was constructed from an empty string. |
| bool isDefault() const { return StringRepresentation.empty(); } |
| |
| /// Returns true if the specified type is known to be a native integer |
| /// type supported by the CPU. |
| /// |
| /// For example, i64 is not native on most 32-bit CPUs and i37 is not native |
| /// on any known one. This returns false if the integer width is not legal. |
| /// |
| /// The width is specified in bits. |
| bool isLegalInteger(uint64_t Width) const { |
| for (unsigned LegalIntWidth : LegalIntWidths) |
| if (LegalIntWidth == Width) |
| return true; |
| return false; |
| } |
| |
| bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); } |
| |
| /// Returns true if the given alignment exceeds the natural stack alignment. |
| bool exceedsNaturalStackAlignment(unsigned Align) const { |
| return (StackNaturalAlign != 0) && (Align > StackNaturalAlign); |
| } |
| |
| unsigned getStackAlignment() const { return StackNaturalAlign; } |
| unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; } |
| |
| unsigned getProgramAddressSpace() const { return ProgramAddrSpace; } |
| |
| bool hasMicrosoftFastStdCallMangling() const { |
| return ManglingMode == MM_WinCOFFX86; |
| } |
| |
| /// Returns true if symbols with leading question marks should not receive IR |
| /// mangling. True for Windows mangling modes. |
| bool doNotMangleLeadingQuestionMark() const { |
| return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86; |
| } |
| |
| bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; } |
| |
| StringRef getLinkerPrivateGlobalPrefix() const { |
| if (ManglingMode == MM_MachO) |
| return "l"; |
| return ""; |
| } |
| |
| char getGlobalPrefix() const { |
| switch (ManglingMode) { |
| case MM_None: |
| case MM_ELF: |
| case MM_Mips: |
| case MM_WinCOFF: |
| return '\0'; |
| case MM_MachO: |
| case MM_WinCOFFX86: |
| return '_'; |
| } |
| llvm_unreachable("invalid mangling mode"); |
| } |
| |
| StringRef getPrivateGlobalPrefix() const { |
| switch (ManglingMode) { |
| case MM_None: |
| return ""; |
| case MM_ELF: |
| case MM_WinCOFF: |
| return ".L"; |
| case MM_Mips: |
| return "$"; |
| case MM_MachO: |
| case MM_WinCOFFX86: |
| return "L"; |
| } |
| llvm_unreachable("invalid mangling mode"); |
| } |
| |
| static const char *getManglingComponent(const Triple &T); |
| |
| /// Returns true if the specified type fits in a native integer type |
| /// supported by the CPU. |
| /// |
| /// For example, if the CPU only supports i32 as a native integer type, then |
| /// i27 fits in a legal integer type but i45 does not. |
| bool fitsInLegalInteger(unsigned Width) const { |
| for (unsigned LegalIntWidth : LegalIntWidths) |
| if (Width <= LegalIntWidth) |
| return true; |
| return false; |
| } |
| |
| /// Layout pointer alignment |
| unsigned getPointerABIAlignment(unsigned AS) const; |
| |
| /// Return target's alignment for stack-based pointers |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| unsigned getPointerPrefAlignment(unsigned AS = 0) const; |
| |
| /// Layout pointer size |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| unsigned getPointerSize(unsigned AS = 0) const; |
| |
| // Index size used for address calculation. |
| unsigned getIndexSize(unsigned AS) const; |
| |
| /// Return the address spaces containing non-integral pointers. Pointers in |
| /// this address space don't have a well-defined bitwise representation. |
| ArrayRef<unsigned> getNonIntegralAddressSpaces() const { |
| return NonIntegralAddressSpaces; |
| } |
| |
| bool isNonIntegralPointerType(PointerType *PT) const { |
| ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces(); |
| return find(NonIntegralSpaces, PT->getAddressSpace()) != |
| NonIntegralSpaces.end(); |
| } |
| |
| bool isNonIntegralPointerType(Type *Ty) const { |
| auto *PTy = dyn_cast<PointerType>(Ty); |
| return PTy && isNonIntegralPointerType(PTy); |
| } |
| |
| /// Layout pointer size, in bits |
| /// FIXME: The defaults need to be removed once all of |
| /// the backends/clients are updated. |
| unsigned getPointerSizeInBits(unsigned AS = 0) const { |
| return getPointerSize(AS) * 8; |
| } |
| |
| /// Size in bits of index used for address calculation in getelementptr. |
| unsigned getIndexSizeInBits(unsigned AS) const { |
| return getIndexSize(AS) * 8; |
| } |
| |
| /// Layout pointer size, in bits, based on the type. If this function is |
| /// called with a pointer type, then the type size of the pointer is returned. |
| /// If this function is called with a vector of pointers, then the type size |
| /// of the pointer is returned. This should only be called with a pointer or |
| /// vector of pointers. |
| unsigned getPointerTypeSizeInBits(Type *) const; |
| |
| /// Layout size of the index used in GEP calculation. |
| /// The function should be called with pointer or vector of pointers type. |
| unsigned getIndexTypeSizeInBits(Type *Ty) const; |
| |
| unsigned getPointerTypeSize(Type *Ty) const { |
| return getPointerTypeSizeInBits(Ty) / 8; |
| } |
| |
| /// Size examples: |
| /// |
| /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*] |
| /// ---- ---------- --------------- --------------- |
| /// i1 1 8 8 |
| /// i8 8 8 8 |
| /// i19 19 24 32 |
| /// i32 32 32 32 |
| /// i100 100 104 128 |
| /// i128 128 128 128 |
| /// Float 32 32 32 |
| /// Double 64 64 64 |
| /// X86_FP80 80 80 96 |
| /// |
| /// [*] The alloc size depends on the alignment, and thus on the target. |
| /// These values are for x86-32 linux. |
| |
| /// Returns the number of bits necessary to hold the specified type. |
| /// |
| /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must |
| /// have a size (Type::isSized() must return true). |
| uint64_t getTypeSizeInBits(Type *Ty) const; |
| |
| /// Returns the maximum number of bytes that may be overwritten by |
| /// storing the specified type. |
| /// |
| /// For example, returns 5 for i36 and 10 for x86_fp80. |
| uint64_t getTypeStoreSize(Type *Ty) const { |
| return (getTypeSizeInBits(Ty) + 7) / 8; |
| } |
| |
| /// Returns the maximum number of bits that may be overwritten by |
| /// storing the specified type; always a multiple of 8. |
| /// |
| /// For example, returns 40 for i36 and 80 for x86_fp80. |
| uint64_t getTypeStoreSizeInBits(Type *Ty) const { |
| return 8 * getTypeStoreSize(Ty); |
| } |
| |
| /// Returns the offset in bytes between successive objects of the |
| /// specified type, including alignment padding. |
| /// |
| /// This is the amount that alloca reserves for this type. For example, |
| /// returns 12 or 16 for x86_fp80, depending on alignment. |
| uint64_t getTypeAllocSize(Type *Ty) const { |
| // Round up to the next alignment boundary. |
| return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty)); |
| } |
| |
| /// Returns the offset in bits between successive objects of the |
| /// specified type, including alignment padding; always a multiple of 8. |
| /// |
| /// This is the amount that alloca reserves for this type. For example, |
| /// returns 96 or 128 for x86_fp80, depending on alignment. |
| uint64_t getTypeAllocSizeInBits(Type *Ty) const { |
| return 8 * getTypeAllocSize(Ty); |
| } |
| |
| /// Returns the minimum ABI-required alignment for the specified type. |
| unsigned getABITypeAlignment(Type *Ty) const; |
| |
| /// Returns the minimum ABI-required alignment for an integer type of |
| /// the specified bitwidth. |
| unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const; |
| |
| /// Returns the preferred stack/global alignment for the specified |
| /// type. |
| /// |
| /// This is always at least as good as the ABI alignment. |
| unsigned getPrefTypeAlignment(Type *Ty) const; |
| |
| /// Returns the preferred alignment for the specified type, returned as |
| /// log2 of the value (a shift amount). |
| unsigned getPreferredTypeAlignmentShift(Type *Ty) const; |
| |
| /// Returns an integer type with size at least as big as that of a |
| /// pointer in the given address space. |
| IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const; |
| |
| /// Returns an integer (vector of integer) type with size at least as |
| /// big as that of a pointer of the given pointer (vector of pointer) type. |
| Type *getIntPtrType(Type *) const; |
| |
| /// Returns the smallest integer type with size at least as big as |
| /// Width bits. |
| Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const; |
| |
| /// Returns the largest legal integer type, or null if none are set. |
| Type *getLargestLegalIntType(LLVMContext &C) const { |
| unsigned LargestSize = getLargestLegalIntTypeSizeInBits(); |
| return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize); |
| } |
| |
| /// Returns the size of largest legal integer type size, or 0 if none |
| /// are set. |
| unsigned getLargestLegalIntTypeSizeInBits() const; |
| |
| /// Returns the type of a GEP index. |
| /// If it was not specified explicitly, it will be the integer type of the |
| /// pointer width - IntPtrType. |
| Type *getIndexType(Type *PtrTy) const; |
| |
| /// Returns the offset from the beginning of the type for the specified |
| /// indices. |
| /// |
| /// Note that this takes the element type, not the pointer type. |
| /// This is used to implement getelementptr. |
| int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const; |
| |
| /// Returns a StructLayout object, indicating the alignment of the |
| /// struct, its size, and the offsets of its fields. |
| /// |
| /// Note that this information is lazily cached. |
| const StructLayout *getStructLayout(StructType *Ty) const; |
| |
| /// Returns the preferred alignment of the specified global. |
| /// |
| /// This includes an explicitly requested alignment (if the global has one). |
| unsigned getPreferredAlignment(const GlobalVariable *GV) const; |
| |
| /// Returns the preferred alignment of the specified global, returned |
| /// in log form. |
| /// |
| /// This includes an explicitly requested alignment (if the global has one). |
| unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const; |
| }; |
| |
| inline DataLayout *unwrap(LLVMTargetDataRef P) { |
| return reinterpret_cast<DataLayout *>(P); |
| } |
| |
| inline LLVMTargetDataRef wrap(const DataLayout *P) { |
| return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P)); |
| } |
| |
| /// Used to lazily calculate structure layout information for a target machine, |
| /// based on the DataLayout structure. |
| class StructLayout { |
| uint64_t StructSize; |
| unsigned StructAlignment; |
| unsigned IsPadded : 1; |
| unsigned NumElements : 31; |
| uint64_t MemberOffsets[1]; // variable sized array! |
| |
| public: |
| uint64_t getSizeInBytes() const { return StructSize; } |
| |
| uint64_t getSizeInBits() const { return 8 * StructSize; } |
| |
| unsigned getAlignment() const { return StructAlignment; } |
| |
| /// Returns whether the struct has padding or not between its fields. |
| /// NB: Padding in nested element is not taken into account. |
| bool hasPadding() const { return IsPadded; } |
| |
| /// Given a valid byte offset into the structure, returns the structure |
| /// index that contains it. |
| unsigned getElementContainingOffset(uint64_t Offset) const; |
| |
| uint64_t getElementOffset(unsigned Idx) const { |
| assert(Idx < NumElements && "Invalid element idx!"); |
| return MemberOffsets[Idx]; |
| } |
| |
| uint64_t getElementOffsetInBits(unsigned Idx) const { |
| return getElementOffset(Idx) * 8; |
| } |
| |
| private: |
| friend class DataLayout; // Only DataLayout can create this class |
| |
| StructLayout(StructType *ST, const DataLayout &DL); |
| }; |
| |
| // The implementation of this method is provided inline as it is particularly |
| // well suited to constant folding when called on a specific Type subclass. |
| inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const { |
| assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); |
| switch (Ty->getTypeID()) { |
| case Type::LabelTyID: |
| return getPointerSizeInBits(0); |
| case Type::PointerTyID: |
| return getPointerSizeInBits(Ty->getPointerAddressSpace()); |
| case Type::ArrayTyID: { |
| ArrayType *ATy = cast<ArrayType>(Ty); |
| return ATy->getNumElements() * |
| getTypeAllocSizeInBits(ATy->getElementType()); |
| } |
| case Type::StructTyID: |
| // Get the layout annotation... which is lazily created on demand. |
| return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); |
| case Type::IntegerTyID: |
| return Ty->getIntegerBitWidth(); |
| case Type::HalfTyID: |
| return 16; |
| case Type::FloatTyID: |
| return 32; |
| case Type::DoubleTyID: |
| case Type::X86_MMXTyID: |
| return 64; |
| case Type::PPC_FP128TyID: |
| case Type::FP128TyID: |
| return 128; |
| // In memory objects this is always aligned to a higher boundary, but |
| // only 80 bits contain information. |
| case Type::X86_FP80TyID: |
| return 80; |
| case Type::VectorTyID: { |
| VectorType *VTy = cast<VectorType>(Ty); |
| return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType()); |
| } |
| default: |
| llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type"); |
| } |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_IR_DATALAYOUT_H |