| //===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the DenseMap class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_DENSEMAP_H |
| #define LLVM_ADT_DENSEMAP_H |
| |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/EpochTracker.h" |
| #include "llvm/Support/AlignOf.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/ReverseIteration.h" |
| #include "llvm/Support/type_traits.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstring> |
| #include <initializer_list> |
| #include <iterator> |
| #include <new> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace llvm { |
| |
| namespace detail { |
| |
| // We extend a pair to allow users to override the bucket type with their own |
| // implementation without requiring two members. |
| template <typename KeyT, typename ValueT> |
| struct DenseMapPair : public std::pair<KeyT, ValueT> { |
| |
| // FIXME: Switch to inheriting constructors when we drop support for older |
| // clang versions. |
| // NOTE: This default constructor is declared with '{}' rather than |
| // '= default' to work around a separate bug in clang-3.8. This can |
| // also go when we switch to inheriting constructors. |
| DenseMapPair() {} |
| |
| DenseMapPair(const KeyT &Key, const ValueT &Value) |
| : std::pair<KeyT, ValueT>(Key, Value) {} |
| |
| DenseMapPair(KeyT &&Key, ValueT &&Value) |
| : std::pair<KeyT, ValueT>(std::move(Key), std::move(Value)) {} |
| |
| template <typename AltKeyT, typename AltValueT> |
| DenseMapPair(AltKeyT &&AltKey, AltValueT &&AltValue, |
| typename std::enable_if< |
| std::is_convertible<AltKeyT, KeyT>::value && |
| std::is_convertible<AltValueT, ValueT>::value>::type * = 0) |
| : std::pair<KeyT, ValueT>(std::forward<AltKeyT>(AltKey), |
| std::forward<AltValueT>(AltValue)) {} |
| |
| template <typename AltPairT> |
| DenseMapPair(AltPairT &&AltPair, |
| typename std::enable_if<std::is_convertible< |
| AltPairT, std::pair<KeyT, ValueT>>::value>::type * = 0) |
| : std::pair<KeyT, ValueT>(std::forward<AltPairT>(AltPair)) {} |
| |
| KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; } |
| const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; } |
| ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; } |
| const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; } |
| }; |
| |
| } // end namespace detail |
| |
| template <typename KeyT, typename ValueT, |
| typename KeyInfoT = DenseMapInfo<KeyT>, |
| typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>, |
| bool IsConst = false> |
| class DenseMapIterator; |
| |
| template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| typename BucketT> |
| class DenseMapBase : public DebugEpochBase { |
| template <typename T> |
| using const_arg_type_t = typename const_pointer_or_const_ref<T>::type; |
| |
| public: |
| using size_type = unsigned; |
| using key_type = KeyT; |
| using mapped_type = ValueT; |
| using value_type = BucketT; |
| |
| using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>; |
| using const_iterator = |
| DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>; |
| |
| inline iterator begin() { |
| // When the map is empty, avoid the overhead of advancing/retreating past |
| // empty buckets. |
| if (empty()) |
| return end(); |
| if (shouldReverseIterate<KeyT>()) |
| return makeIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| return makeIterator(getBuckets(), getBucketsEnd(), *this); |
| } |
| inline iterator end() { |
| return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| } |
| inline const_iterator begin() const { |
| if (empty()) |
| return end(); |
| if (shouldReverseIterate<KeyT>()) |
| return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this); |
| return makeConstIterator(getBuckets(), getBucketsEnd(), *this); |
| } |
| inline const_iterator end() const { |
| return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true); |
| } |
| |
| LLVM_NODISCARD bool empty() const { |
| return getNumEntries() == 0; |
| } |
| unsigned size() const { return getNumEntries(); } |
| |
| /// Grow the densemap so that it can contain at least \p NumEntries items |
| /// before resizing again. |
| void reserve(size_type NumEntries) { |
| auto NumBuckets = getMinBucketToReserveForEntries(NumEntries); |
| incrementEpoch(); |
| if (NumBuckets > getNumBuckets()) |
| grow(NumBuckets); |
| } |
| |
| void clear() { |
| incrementEpoch(); |
| if (getNumEntries() == 0 && getNumTombstones() == 0) return; |
| |
| // If the capacity of the array is huge, and the # elements used is small, |
| // shrink the array. |
| if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) { |
| shrink_and_clear(); |
| return; |
| } |
| |
| const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| if (is_trivially_copyable<KeyT>::value && |
| is_trivially_copyable<ValueT>::value) { |
| // Use a simpler loop when these are trivial types. |
| for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) |
| P->getFirst() = EmptyKey; |
| } else { |
| unsigned NumEntries = getNumEntries(); |
| for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) { |
| if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| P->getSecond().~ValueT(); |
| --NumEntries; |
| } |
| P->getFirst() = EmptyKey; |
| } |
| } |
| assert(NumEntries == 0 && "Node count imbalance!"); |
| } |
| setNumEntries(0); |
| setNumTombstones(0); |
| } |
| |
| /// Return 1 if the specified key is in the map, 0 otherwise. |
| size_type count(const_arg_type_t<KeyT> Val) const { |
| const BucketT *TheBucket; |
| return LookupBucketFor(Val, TheBucket) ? 1 : 0; |
| } |
| |
| iterator find(const_arg_type_t<KeyT> Val) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
| return end(); |
| } |
| const_iterator find(const_arg_type_t<KeyT> Val) const { |
| const BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
| return end(); |
| } |
| |
| /// Alternate version of find() which allows a different, and possibly |
| /// less expensive, key type. |
| /// The DenseMapInfo is responsible for supplying methods |
| /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| /// type used. |
| template<class LookupKeyT> |
| iterator find_as(const LookupKeyT &Val) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return makeIterator(TheBucket, getBucketsEnd(), *this, true); |
| return end(); |
| } |
| template<class LookupKeyT> |
| const_iterator find_as(const LookupKeyT &Val) const { |
| const BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return makeConstIterator(TheBucket, getBucketsEnd(), *this, true); |
| return end(); |
| } |
| |
| /// lookup - Return the entry for the specified key, or a default |
| /// constructed value if no such entry exists. |
| ValueT lookup(const_arg_type_t<KeyT> Val) const { |
| const BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return TheBucket->getSecond(); |
| return ValueT(); |
| } |
| |
| // Inserts key,value pair into the map if the key isn't already in the map. |
| // If the key is already in the map, it returns false and doesn't update the |
| // value. |
| std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { |
| return try_emplace(KV.first, KV.second); |
| } |
| |
| // Inserts key,value pair into the map if the key isn't already in the map. |
| // If the key is already in the map, it returns false and doesn't update the |
| // value. |
| std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) { |
| return try_emplace(std::move(KV.first), std::move(KV.second)); |
| } |
| |
| // Inserts key,value pair into the map if the key isn't already in the map. |
| // The value is constructed in-place if the key is not in the map, otherwise |
| // it is not moved. |
| template <typename... Ts> |
| std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Key, TheBucket)) |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| false); // Already in map. |
| |
| // Otherwise, insert the new element. |
| TheBucket = |
| InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...); |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| true); |
| } |
| |
| // Inserts key,value pair into the map if the key isn't already in the map. |
| // The value is constructed in-place if the key is not in the map, otherwise |
| // it is not moved. |
| template <typename... Ts> |
| std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Key, TheBucket)) |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| false); // Already in map. |
| |
| // Otherwise, insert the new element. |
| TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...); |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| true); |
| } |
| |
| /// Alternate version of insert() which allows a different, and possibly |
| /// less expensive, key type. |
| /// The DenseMapInfo is responsible for supplying methods |
| /// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key |
| /// type used. |
| template <typename LookupKeyT> |
| std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV, |
| const LookupKeyT &Val) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Val, TheBucket)) |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| false); // Already in map. |
| |
| // Otherwise, insert the new element. |
| TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first), |
| std::move(KV.second), Val); |
| return std::make_pair( |
| makeIterator(TheBucket, getBucketsEnd(), *this, true), |
| true); |
| } |
| |
| /// insert - Range insertion of pairs. |
| template<typename InputIt> |
| void insert(InputIt I, InputIt E) { |
| for (; I != E; ++I) |
| insert(*I); |
| } |
| |
| bool erase(const KeyT &Val) { |
| BucketT *TheBucket; |
| if (!LookupBucketFor(Val, TheBucket)) |
| return false; // not in map. |
| |
| TheBucket->getSecond().~ValueT(); |
| TheBucket->getFirst() = getTombstoneKey(); |
| decrementNumEntries(); |
| incrementNumTombstones(); |
| return true; |
| } |
| void erase(iterator I) { |
| BucketT *TheBucket = &*I; |
| TheBucket->getSecond().~ValueT(); |
| TheBucket->getFirst() = getTombstoneKey(); |
| decrementNumEntries(); |
| incrementNumTombstones(); |
| } |
| |
| value_type& FindAndConstruct(const KeyT &Key) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Key, TheBucket)) |
| return *TheBucket; |
| |
| return *InsertIntoBucket(TheBucket, Key); |
| } |
| |
| ValueT &operator[](const KeyT &Key) { |
| return FindAndConstruct(Key).second; |
| } |
| |
| value_type& FindAndConstruct(KeyT &&Key) { |
| BucketT *TheBucket; |
| if (LookupBucketFor(Key, TheBucket)) |
| return *TheBucket; |
| |
| return *InsertIntoBucket(TheBucket, std::move(Key)); |
| } |
| |
| ValueT &operator[](KeyT &&Key) { |
| return FindAndConstruct(std::move(Key)).second; |
| } |
| |
| /// isPointerIntoBucketsArray - Return true if the specified pointer points |
| /// somewhere into the DenseMap's array of buckets (i.e. either to a key or |
| /// value in the DenseMap). |
| bool isPointerIntoBucketsArray(const void *Ptr) const { |
| return Ptr >= getBuckets() && Ptr < getBucketsEnd(); |
| } |
| |
| /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets |
| /// array. In conjunction with the previous method, this can be used to |
| /// determine whether an insertion caused the DenseMap to reallocate. |
| const void *getPointerIntoBucketsArray() const { return getBuckets(); } |
| |
| protected: |
| DenseMapBase() = default; |
| |
| void destroyAll() { |
| if (getNumBuckets() == 0) // Nothing to do. |
| return; |
| |
| const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey(); |
| for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) { |
| if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) |
| P->getSecond().~ValueT(); |
| P->getFirst().~KeyT(); |
| } |
| } |
| |
| void initEmpty() { |
| setNumEntries(0); |
| setNumTombstones(0); |
| |
| assert((getNumBuckets() & (getNumBuckets()-1)) == 0 && |
| "# initial buckets must be a power of two!"); |
| const KeyT EmptyKey = getEmptyKey(); |
| for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B) |
| ::new (&B->getFirst()) KeyT(EmptyKey); |
| } |
| |
| /// Returns the number of buckets to allocate to ensure that the DenseMap can |
| /// accommodate \p NumEntries without need to grow(). |
| unsigned getMinBucketToReserveForEntries(unsigned NumEntries) { |
| // Ensure that "NumEntries * 4 < NumBuckets * 3" |
| if (NumEntries == 0) |
| return 0; |
| // +1 is required because of the strict equality. |
| // For example if NumEntries is 48, we need to return 401. |
| return NextPowerOf2(NumEntries * 4 / 3 + 1); |
| } |
| |
| void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) { |
| initEmpty(); |
| |
| // Insert all the old elements. |
| const KeyT EmptyKey = getEmptyKey(); |
| const KeyT TombstoneKey = getTombstoneKey(); |
| for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) { |
| if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) { |
| // Insert the key/value into the new table. |
| BucketT *DestBucket; |
| bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket); |
| (void)FoundVal; // silence warning. |
| assert(!FoundVal && "Key already in new map?"); |
| DestBucket->getFirst() = std::move(B->getFirst()); |
| ::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond())); |
| incrementNumEntries(); |
| |
| // Free the value. |
| B->getSecond().~ValueT(); |
| } |
| B->getFirst().~KeyT(); |
| } |
| } |
| |
| template <typename OtherBaseT> |
| void copyFrom( |
| const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) { |
| assert(&other != this); |
| assert(getNumBuckets() == other.getNumBuckets()); |
| |
| setNumEntries(other.getNumEntries()); |
| setNumTombstones(other.getNumTombstones()); |
| |
| if (is_trivially_copyable<KeyT>::value && |
| is_trivially_copyable<ValueT>::value) |
| memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(), |
| getNumBuckets() * sizeof(BucketT)); |
| else |
| for (size_t i = 0; i < getNumBuckets(); ++i) { |
| ::new (&getBuckets()[i].getFirst()) |
| KeyT(other.getBuckets()[i].getFirst()); |
| if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) && |
| !KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey())) |
| ::new (&getBuckets()[i].getSecond()) |
| ValueT(other.getBuckets()[i].getSecond()); |
| } |
| } |
| |
| static unsigned getHashValue(const KeyT &Val) { |
| return KeyInfoT::getHashValue(Val); |
| } |
| |
| template<typename LookupKeyT> |
| static unsigned getHashValue(const LookupKeyT &Val) { |
| return KeyInfoT::getHashValue(Val); |
| } |
| |
| static const KeyT getEmptyKey() { |
| static_assert(std::is_base_of<DenseMapBase, DerivedT>::value, |
| "Must pass the derived type to this template!"); |
| return KeyInfoT::getEmptyKey(); |
| } |
| |
| static const KeyT getTombstoneKey() { |
| return KeyInfoT::getTombstoneKey(); |
| } |
| |
| private: |
| iterator makeIterator(BucketT *P, BucketT *E, |
| DebugEpochBase &Epoch, |
| bool NoAdvance=false) { |
| if (shouldReverseIterate<KeyT>()) { |
| BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| return iterator(B, E, Epoch, NoAdvance); |
| } |
| return iterator(P, E, Epoch, NoAdvance); |
| } |
| |
| const_iterator makeConstIterator(const BucketT *P, const BucketT *E, |
| const DebugEpochBase &Epoch, |
| const bool NoAdvance=false) const { |
| if (shouldReverseIterate<KeyT>()) { |
| const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1; |
| return const_iterator(B, E, Epoch, NoAdvance); |
| } |
| return const_iterator(P, E, Epoch, NoAdvance); |
| } |
| |
| unsigned getNumEntries() const { |
| return static_cast<const DerivedT *>(this)->getNumEntries(); |
| } |
| |
| void setNumEntries(unsigned Num) { |
| static_cast<DerivedT *>(this)->setNumEntries(Num); |
| } |
| |
| void incrementNumEntries() { |
| setNumEntries(getNumEntries() + 1); |
| } |
| |
| void decrementNumEntries() { |
| setNumEntries(getNumEntries() - 1); |
| } |
| |
| unsigned getNumTombstones() const { |
| return static_cast<const DerivedT *>(this)->getNumTombstones(); |
| } |
| |
| void setNumTombstones(unsigned Num) { |
| static_cast<DerivedT *>(this)->setNumTombstones(Num); |
| } |
| |
| void incrementNumTombstones() { |
| setNumTombstones(getNumTombstones() + 1); |
| } |
| |
| void decrementNumTombstones() { |
| setNumTombstones(getNumTombstones() - 1); |
| } |
| |
| const BucketT *getBuckets() const { |
| return static_cast<const DerivedT *>(this)->getBuckets(); |
| } |
| |
| BucketT *getBuckets() { |
| return static_cast<DerivedT *>(this)->getBuckets(); |
| } |
| |
| unsigned getNumBuckets() const { |
| return static_cast<const DerivedT *>(this)->getNumBuckets(); |
| } |
| |
| BucketT *getBucketsEnd() { |
| return getBuckets() + getNumBuckets(); |
| } |
| |
| const BucketT *getBucketsEnd() const { |
| return getBuckets() + getNumBuckets(); |
| } |
| |
| void grow(unsigned AtLeast) { |
| static_cast<DerivedT *>(this)->grow(AtLeast); |
| } |
| |
| void shrink_and_clear() { |
| static_cast<DerivedT *>(this)->shrink_and_clear(); |
| } |
| |
| template <typename KeyArg, typename... ValueArgs> |
| BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key, |
| ValueArgs &&... Values) { |
| TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket); |
| |
| TheBucket->getFirst() = std::forward<KeyArg>(Key); |
| ::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...); |
| return TheBucket; |
| } |
| |
| template <typename LookupKeyT> |
| BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key, |
| ValueT &&Value, LookupKeyT &Lookup) { |
| TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket); |
| |
| TheBucket->getFirst() = std::move(Key); |
| ::new (&TheBucket->getSecond()) ValueT(std::move(Value)); |
| return TheBucket; |
| } |
| |
| template <typename LookupKeyT> |
| BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup, |
| BucketT *TheBucket) { |
| incrementEpoch(); |
| |
| // If the load of the hash table is more than 3/4, or if fewer than 1/8 of |
| // the buckets are empty (meaning that many are filled with tombstones), |
| // grow the table. |
| // |
| // The later case is tricky. For example, if we had one empty bucket with |
| // tons of tombstones, failing lookups (e.g. for insertion) would have to |
| // probe almost the entire table until it found the empty bucket. If the |
| // table completely filled with tombstones, no lookup would ever succeed, |
| // causing infinite loops in lookup. |
| unsigned NewNumEntries = getNumEntries() + 1; |
| unsigned NumBuckets = getNumBuckets(); |
| if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) { |
| this->grow(NumBuckets * 2); |
| LookupBucketFor(Lookup, TheBucket); |
| NumBuckets = getNumBuckets(); |
| } else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <= |
| NumBuckets/8)) { |
| this->grow(NumBuckets); |
| LookupBucketFor(Lookup, TheBucket); |
| } |
| assert(TheBucket); |
| |
| // Only update the state after we've grown our bucket space appropriately |
| // so that when growing buckets we have self-consistent entry count. |
| incrementNumEntries(); |
| |
| // If we are writing over a tombstone, remember this. |
| const KeyT EmptyKey = getEmptyKey(); |
| if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey)) |
| decrementNumTombstones(); |
| |
| return TheBucket; |
| } |
| |
| /// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in |
| /// FoundBucket. If the bucket contains the key and a value, this returns |
| /// true, otherwise it returns a bucket with an empty marker or tombstone and |
| /// returns false. |
| template<typename LookupKeyT> |
| bool LookupBucketFor(const LookupKeyT &Val, |
| const BucketT *&FoundBucket) const { |
| const BucketT *BucketsPtr = getBuckets(); |
| const unsigned NumBuckets = getNumBuckets(); |
| |
| if (NumBuckets == 0) { |
| FoundBucket = nullptr; |
| return false; |
| } |
| |
| // FoundTombstone - Keep track of whether we find a tombstone while probing. |
| const BucketT *FoundTombstone = nullptr; |
| const KeyT EmptyKey = getEmptyKey(); |
| const KeyT TombstoneKey = getTombstoneKey(); |
| assert(!KeyInfoT::isEqual(Val, EmptyKey) && |
| !KeyInfoT::isEqual(Val, TombstoneKey) && |
| "Empty/Tombstone value shouldn't be inserted into map!"); |
| |
| unsigned BucketNo = getHashValue(Val) & (NumBuckets-1); |
| unsigned ProbeAmt = 1; |
| while (true) { |
| const BucketT *ThisBucket = BucketsPtr + BucketNo; |
| // Found Val's bucket? If so, return it. |
| if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) { |
| FoundBucket = ThisBucket; |
| return true; |
| } |
| |
| // If we found an empty bucket, the key doesn't exist in the set. |
| // Insert it and return the default value. |
| if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) { |
| // If we've already seen a tombstone while probing, fill it in instead |
| // of the empty bucket we eventually probed to. |
| FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket; |
| return false; |
| } |
| |
| // If this is a tombstone, remember it. If Val ends up not in the map, we |
| // prefer to return it than something that would require more probing. |
| if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) && |
| !FoundTombstone) |
| FoundTombstone = ThisBucket; // Remember the first tombstone found. |
| |
| // Otherwise, it's a hash collision or a tombstone, continue quadratic |
| // probing. |
| BucketNo += ProbeAmt++; |
| BucketNo &= (NumBuckets-1); |
| } |
| } |
| |
| template <typename LookupKeyT> |
| bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) { |
| const BucketT *ConstFoundBucket; |
| bool Result = const_cast<const DenseMapBase *>(this) |
| ->LookupBucketFor(Val, ConstFoundBucket); |
| FoundBucket = const_cast<BucketT *>(ConstFoundBucket); |
| return Result; |
| } |
| |
| public: |
| /// Return the approximate size (in bytes) of the actual map. |
| /// This is just the raw memory used by DenseMap. |
| /// If entries are pointers to objects, the size of the referenced objects |
| /// are not included. |
| size_t getMemorySize() const { |
| return getNumBuckets() * sizeof(BucketT); |
| } |
| }; |
| |
| /// Equality comparison for DenseMap. |
| /// |
| /// Iterates over elements of LHS confirming that each (key, value) pair in LHS |
| /// is also in RHS, and that no additional pairs are in RHS. |
| /// Equivalent to N calls to RHS.find and N value comparisons. Amortized |
| /// complexity is linear, worst case is O(N^2) (if every hash collides). |
| template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| typename BucketT> |
| bool operator==( |
| const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| if (LHS.size() != RHS.size()) |
| return false; |
| |
| for (auto &KV : LHS) { |
| auto I = RHS.find(KV.first); |
| if (I == RHS.end() || I->second != KV.second) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// Inequality comparison for DenseMap. |
| /// |
| /// Equivalent to !(LHS == RHS). See operator== for performance notes. |
| template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT, |
| typename BucketT> |
| bool operator!=( |
| const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS, |
| const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) { |
| return !(LHS == RHS); |
| } |
| |
| template <typename KeyT, typename ValueT, |
| typename KeyInfoT = DenseMapInfo<KeyT>, |
| typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>, |
| KeyT, ValueT, KeyInfoT, BucketT> { |
| friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| |
| // Lift some types from the dependent base class into this class for |
| // simplicity of referring to them. |
| using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| |
| BucketT *Buckets; |
| unsigned NumEntries; |
| unsigned NumTombstones; |
| unsigned NumBuckets; |
| |
| public: |
| /// Create a DenseMap wth an optional \p InitialReserve that guarantee that |
| /// this number of elements can be inserted in the map without grow() |
| explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); } |
| |
| DenseMap(const DenseMap &other) : BaseT() { |
| init(0); |
| copyFrom(other); |
| } |
| |
| DenseMap(DenseMap &&other) : BaseT() { |
| init(0); |
| swap(other); |
| } |
| |
| template<typename InputIt> |
| DenseMap(const InputIt &I, const InputIt &E) { |
| init(std::distance(I, E)); |
| this->insert(I, E); |
| } |
| |
| DenseMap(std::initializer_list<typename BaseT::value_type> Vals) { |
| init(Vals.size()); |
| this->insert(Vals.begin(), Vals.end()); |
| } |
| |
| ~DenseMap() { |
| this->destroyAll(); |
| operator delete(Buckets); |
| } |
| |
| void swap(DenseMap& RHS) { |
| this->incrementEpoch(); |
| RHS.incrementEpoch(); |
| std::swap(Buckets, RHS.Buckets); |
| std::swap(NumEntries, RHS.NumEntries); |
| std::swap(NumTombstones, RHS.NumTombstones); |
| std::swap(NumBuckets, RHS.NumBuckets); |
| } |
| |
| DenseMap& operator=(const DenseMap& other) { |
| if (&other != this) |
| copyFrom(other); |
| return *this; |
| } |
| |
| DenseMap& operator=(DenseMap &&other) { |
| this->destroyAll(); |
| operator delete(Buckets); |
| init(0); |
| swap(other); |
| return *this; |
| } |
| |
| void copyFrom(const DenseMap& other) { |
| this->destroyAll(); |
| operator delete(Buckets); |
| if (allocateBuckets(other.NumBuckets)) { |
| this->BaseT::copyFrom(other); |
| } else { |
| NumEntries = 0; |
| NumTombstones = 0; |
| } |
| } |
| |
| void init(unsigned InitNumEntries) { |
| auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries); |
| if (allocateBuckets(InitBuckets)) { |
| this->BaseT::initEmpty(); |
| } else { |
| NumEntries = 0; |
| NumTombstones = 0; |
| } |
| } |
| |
| void grow(unsigned AtLeast) { |
| unsigned OldNumBuckets = NumBuckets; |
| BucketT *OldBuckets = Buckets; |
| |
| allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1)))); |
| assert(Buckets); |
| if (!OldBuckets) { |
| this->BaseT::initEmpty(); |
| return; |
| } |
| |
| this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets); |
| |
| // Free the old table. |
| operator delete(OldBuckets); |
| } |
| |
| void shrink_and_clear() { |
| unsigned OldNumEntries = NumEntries; |
| this->destroyAll(); |
| |
| // Reduce the number of buckets. |
| unsigned NewNumBuckets = 0; |
| if (OldNumEntries) |
| NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1)); |
| if (NewNumBuckets == NumBuckets) { |
| this->BaseT::initEmpty(); |
| return; |
| } |
| |
| operator delete(Buckets); |
| init(NewNumBuckets); |
| } |
| |
| private: |
| unsigned getNumEntries() const { |
| return NumEntries; |
| } |
| |
| void setNumEntries(unsigned Num) { |
| NumEntries = Num; |
| } |
| |
| unsigned getNumTombstones() const { |
| return NumTombstones; |
| } |
| |
| void setNumTombstones(unsigned Num) { |
| NumTombstones = Num; |
| } |
| |
| BucketT *getBuckets() const { |
| return Buckets; |
| } |
| |
| unsigned getNumBuckets() const { |
| return NumBuckets; |
| } |
| |
| bool allocateBuckets(unsigned Num) { |
| NumBuckets = Num; |
| if (NumBuckets == 0) { |
| Buckets = nullptr; |
| return false; |
| } |
| |
| Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets)); |
| return true; |
| } |
| }; |
| |
| template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4, |
| typename KeyInfoT = DenseMapInfo<KeyT>, |
| typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>> |
| class SmallDenseMap |
| : public DenseMapBase< |
| SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT, |
| ValueT, KeyInfoT, BucketT> { |
| friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| |
| // Lift some types from the dependent base class into this class for |
| // simplicity of referring to them. |
| using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>; |
| |
| static_assert(isPowerOf2_64(InlineBuckets), |
| "InlineBuckets must be a power of 2."); |
| |
| unsigned Small : 1; |
| unsigned NumEntries : 31; |
| unsigned NumTombstones; |
| |
| struct LargeRep { |
| BucketT *Buckets; |
| unsigned NumBuckets; |
| }; |
| |
| /// A "union" of an inline bucket array and the struct representing |
| /// a large bucket. This union will be discriminated by the 'Small' bit. |
| AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage; |
| |
| public: |
| explicit SmallDenseMap(unsigned NumInitBuckets = 0) { |
| init(NumInitBuckets); |
| } |
| |
| SmallDenseMap(const SmallDenseMap &other) : BaseT() { |
| init(0); |
| copyFrom(other); |
| } |
| |
| SmallDenseMap(SmallDenseMap &&other) : BaseT() { |
| init(0); |
| swap(other); |
| } |
| |
| template<typename InputIt> |
| SmallDenseMap(const InputIt &I, const InputIt &E) { |
| init(NextPowerOf2(std::distance(I, E))); |
| this->insert(I, E); |
| } |
| |
| ~SmallDenseMap() { |
| this->destroyAll(); |
| deallocateBuckets(); |
| } |
| |
| void swap(SmallDenseMap& RHS) { |
| unsigned TmpNumEntries = RHS.NumEntries; |
| RHS.NumEntries = NumEntries; |
| NumEntries = TmpNumEntries; |
| std::swap(NumTombstones, RHS.NumTombstones); |
| |
| const KeyT EmptyKey = this->getEmptyKey(); |
| const KeyT TombstoneKey = this->getTombstoneKey(); |
| if (Small && RHS.Small) { |
| // If we're swapping inline bucket arrays, we have to cope with some of |
| // the tricky bits of DenseMap's storage system: the buckets are not |
| // fully initialized. Thus we swap every key, but we may have |
| // a one-directional move of the value. |
| for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| BucketT *LHSB = &getInlineBuckets()[i], |
| *RHSB = &RHS.getInlineBuckets()[i]; |
| bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey)); |
| bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey)); |
| if (hasLHSValue && hasRHSValue) { |
| // Swap together if we can... |
| std::swap(*LHSB, *RHSB); |
| continue; |
| } |
| // Swap separately and handle any assymetry. |
| std::swap(LHSB->getFirst(), RHSB->getFirst()); |
| if (hasLHSValue) { |
| ::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond())); |
| LHSB->getSecond().~ValueT(); |
| } else if (hasRHSValue) { |
| ::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond())); |
| RHSB->getSecond().~ValueT(); |
| } |
| } |
| return; |
| } |
| if (!Small && !RHS.Small) { |
| std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets); |
| std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets); |
| return; |
| } |
| |
| SmallDenseMap &SmallSide = Small ? *this : RHS; |
| SmallDenseMap &LargeSide = Small ? RHS : *this; |
| |
| // First stash the large side's rep and move the small side across. |
| LargeRep TmpRep = std::move(*LargeSide.getLargeRep()); |
| LargeSide.getLargeRep()->~LargeRep(); |
| LargeSide.Small = true; |
| // This is similar to the standard move-from-old-buckets, but the bucket |
| // count hasn't actually rotated in this case. So we have to carefully |
| // move construct the keys and values into their new locations, but there |
| // is no need to re-hash things. |
| for (unsigned i = 0, e = InlineBuckets; i != e; ++i) { |
| BucketT *NewB = &LargeSide.getInlineBuckets()[i], |
| *OldB = &SmallSide.getInlineBuckets()[i]; |
| ::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst())); |
| OldB->getFirst().~KeyT(); |
| if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) { |
| ::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond())); |
| OldB->getSecond().~ValueT(); |
| } |
| } |
| |
| // The hard part of moving the small buckets across is done, just move |
| // the TmpRep into its new home. |
| SmallSide.Small = false; |
| new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep)); |
| } |
| |
| SmallDenseMap& operator=(const SmallDenseMap& other) { |
| if (&other != this) |
| copyFrom(other); |
| return *this; |
| } |
| |
| SmallDenseMap& operator=(SmallDenseMap &&other) { |
| this->destroyAll(); |
| deallocateBuckets(); |
| init(0); |
| swap(other); |
| return *this; |
| } |
| |
| void copyFrom(const SmallDenseMap& other) { |
| this->destroyAll(); |
| deallocateBuckets(); |
| Small = true; |
| if (other.getNumBuckets() > InlineBuckets) { |
| Small = false; |
| new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets())); |
| } |
| this->BaseT::copyFrom(other); |
| } |
| |
| void init(unsigned InitBuckets) { |
| Small = true; |
| if (InitBuckets > InlineBuckets) { |
| Small = false; |
| new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets)); |
| } |
| this->BaseT::initEmpty(); |
| } |
| |
| void grow(unsigned AtLeast) { |
| if (AtLeast >= InlineBuckets) |
| AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1)); |
| |
| if (Small) { |
| if (AtLeast < InlineBuckets) |
| return; // Nothing to do. |
| |
| // First move the inline buckets into a temporary storage. |
| AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage; |
| BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer); |
| BucketT *TmpEnd = TmpBegin; |
| |
| // Loop over the buckets, moving non-empty, non-tombstones into the |
| // temporary storage. Have the loop move the TmpEnd forward as it goes. |
| const KeyT EmptyKey = this->getEmptyKey(); |
| const KeyT TombstoneKey = this->getTombstoneKey(); |
| for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) { |
| if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) && |
| !KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) { |
| assert(size_t(TmpEnd - TmpBegin) < InlineBuckets && |
| "Too many inline buckets!"); |
| ::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst())); |
| ::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond())); |
| ++TmpEnd; |
| P->getSecond().~ValueT(); |
| } |
| P->getFirst().~KeyT(); |
| } |
| |
| // Now make this map use the large rep, and move all the entries back |
| // into it. |
| Small = false; |
| new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| this->moveFromOldBuckets(TmpBegin, TmpEnd); |
| return; |
| } |
| |
| LargeRep OldRep = std::move(*getLargeRep()); |
| getLargeRep()->~LargeRep(); |
| if (AtLeast <= InlineBuckets) { |
| Small = true; |
| } else { |
| new (getLargeRep()) LargeRep(allocateBuckets(AtLeast)); |
| } |
| |
| this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets); |
| |
| // Free the old table. |
| operator delete(OldRep.Buckets); |
| } |
| |
| void shrink_and_clear() { |
| unsigned OldSize = this->size(); |
| this->destroyAll(); |
| |
| // Reduce the number of buckets. |
| unsigned NewNumBuckets = 0; |
| if (OldSize) { |
| NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1); |
| if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u) |
| NewNumBuckets = 64; |
| } |
| if ((Small && NewNumBuckets <= InlineBuckets) || |
| (!Small && NewNumBuckets == getLargeRep()->NumBuckets)) { |
| this->BaseT::initEmpty(); |
| return; |
| } |
| |
| deallocateBuckets(); |
| init(NewNumBuckets); |
| } |
| |
| private: |
| unsigned getNumEntries() const { |
| return NumEntries; |
| } |
| |
| void setNumEntries(unsigned Num) { |
| // NumEntries is hardcoded to be 31 bits wide. |
| assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries"); |
| NumEntries = Num; |
| } |
| |
| unsigned getNumTombstones() const { |
| return NumTombstones; |
| } |
| |
| void setNumTombstones(unsigned Num) { |
| NumTombstones = Num; |
| } |
| |
| const BucketT *getInlineBuckets() const { |
| assert(Small); |
| // Note that this cast does not violate aliasing rules as we assert that |
| // the memory's dynamic type is the small, inline bucket buffer, and the |
| // 'storage.buffer' static type is 'char *'. |
| return reinterpret_cast<const BucketT *>(storage.buffer); |
| } |
| |
| BucketT *getInlineBuckets() { |
| return const_cast<BucketT *>( |
| const_cast<const SmallDenseMap *>(this)->getInlineBuckets()); |
| } |
| |
| const LargeRep *getLargeRep() const { |
| assert(!Small); |
| // Note, same rule about aliasing as with getInlineBuckets. |
| return reinterpret_cast<const LargeRep *>(storage.buffer); |
| } |
| |
| LargeRep *getLargeRep() { |
| return const_cast<LargeRep *>( |
| const_cast<const SmallDenseMap *>(this)->getLargeRep()); |
| } |
| |
| const BucketT *getBuckets() const { |
| return Small ? getInlineBuckets() : getLargeRep()->Buckets; |
| } |
| |
| BucketT *getBuckets() { |
| return const_cast<BucketT *>( |
| const_cast<const SmallDenseMap *>(this)->getBuckets()); |
| } |
| |
| unsigned getNumBuckets() const { |
| return Small ? InlineBuckets : getLargeRep()->NumBuckets; |
| } |
| |
| void deallocateBuckets() { |
| if (Small) |
| return; |
| |
| operator delete(getLargeRep()->Buckets); |
| getLargeRep()->~LargeRep(); |
| } |
| |
| LargeRep allocateBuckets(unsigned Num) { |
| assert(Num > InlineBuckets && "Must allocate more buckets than are inline"); |
| LargeRep Rep = { |
| static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num |
| }; |
| return Rep; |
| } |
| }; |
| |
| template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket, |
| bool IsConst> |
| class DenseMapIterator : DebugEpochBase::HandleBase { |
| friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>; |
| |
| using ConstIterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>; |
| |
| public: |
| using difference_type = ptrdiff_t; |
| using value_type = |
| typename std::conditional<IsConst, const Bucket, Bucket>::type; |
| using pointer = value_type *; |
| using reference = value_type &; |
| using iterator_category = std::forward_iterator_tag; |
| |
| private: |
| pointer Ptr = nullptr; |
| pointer End = nullptr; |
| |
| public: |
| DenseMapIterator() = default; |
| |
| DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch, |
| bool NoAdvance = false) |
| : DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) { |
| assert(isHandleInSync() && "invalid construction!"); |
| |
| if (NoAdvance) return; |
| if (shouldReverseIterate<KeyT>()) { |
| RetreatPastEmptyBuckets(); |
| return; |
| } |
| AdvancePastEmptyBuckets(); |
| } |
| |
| // Converting ctor from non-const iterators to const iterators. SFINAE'd out |
| // for const iterator destinations so it doesn't end up as a user defined copy |
| // constructor. |
| template <bool IsConstSrc, |
| typename = typename std::enable_if<!IsConstSrc && IsConst>::type> |
| DenseMapIterator( |
| const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I) |
| : DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {} |
| |
| reference operator*() const { |
| assert(isHandleInSync() && "invalid iterator access!"); |
| if (shouldReverseIterate<KeyT>()) |
| return Ptr[-1]; |
| return *Ptr; |
| } |
| pointer operator->() const { |
| assert(isHandleInSync() && "invalid iterator access!"); |
| if (shouldReverseIterate<KeyT>()) |
| return &(Ptr[-1]); |
| return Ptr; |
| } |
| |
| bool operator==(const ConstIterator &RHS) const { |
| assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
| assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
| assert(getEpochAddress() == RHS.getEpochAddress() && |
| "comparing incomparable iterators!"); |
| return Ptr == RHS.Ptr; |
| } |
| bool operator!=(const ConstIterator &RHS) const { |
| assert((!Ptr || isHandleInSync()) && "handle not in sync!"); |
| assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!"); |
| assert(getEpochAddress() == RHS.getEpochAddress() && |
| "comparing incomparable iterators!"); |
| return Ptr != RHS.Ptr; |
| } |
| |
| inline DenseMapIterator& operator++() { // Preincrement |
| assert(isHandleInSync() && "invalid iterator access!"); |
| if (shouldReverseIterate<KeyT>()) { |
| --Ptr; |
| RetreatPastEmptyBuckets(); |
| return *this; |
| } |
| ++Ptr; |
| AdvancePastEmptyBuckets(); |
| return *this; |
| } |
| DenseMapIterator operator++(int) { // Postincrement |
| assert(isHandleInSync() && "invalid iterator access!"); |
| DenseMapIterator tmp = *this; ++*this; return tmp; |
| } |
| |
| private: |
| void AdvancePastEmptyBuckets() { |
| assert(Ptr <= End); |
| const KeyT Empty = KeyInfoT::getEmptyKey(); |
| const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| |
| while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) || |
| KeyInfoT::isEqual(Ptr->getFirst(), Tombstone))) |
| ++Ptr; |
| } |
| |
| void RetreatPastEmptyBuckets() { |
| assert(Ptr >= End); |
| const KeyT Empty = KeyInfoT::getEmptyKey(); |
| const KeyT Tombstone = KeyInfoT::getTombstoneKey(); |
| |
| while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) || |
| KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone))) |
| --Ptr; |
| } |
| }; |
| |
| template <typename KeyT, typename ValueT, typename KeyInfoT> |
| inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) { |
| return X.getMemorySize(); |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ADT_DENSEMAP_H |