| //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file "describes" induction and recurrence variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H |
| #define LLVM_ANALYSIS_IVDESCRIPTORS_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| |
| namespace llvm { |
| |
| class AliasSet; |
| class AliasSetTracker; |
| class BasicBlock; |
| class DataLayout; |
| class Loop; |
| class LoopInfo; |
| class OptimizationRemarkEmitter; |
| class PredicatedScalarEvolution; |
| class PredIteratorCache; |
| class ScalarEvolution; |
| class SCEV; |
| class TargetLibraryInfo; |
| class TargetTransformInfo; |
| |
| /// The RecurrenceDescriptor is used to identify recurrences variables in a |
| /// loop. Reduction is a special case of recurrence that has uses of the |
| /// recurrence variable outside the loop. The method isReductionPHI identifies |
| /// reductions that are basic recurrences. |
| /// |
| /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min, |
| /// or max of a set of terms. For example: for(i=0; i<n; i++) { total += |
| /// array[i]; } is a summation of array elements. Basic recurrences are a |
| /// special case of chains of recurrences (CR). See ScalarEvolution for CR |
| /// references. |
| |
| /// This struct holds information about recurrence variables. |
| class RecurrenceDescriptor { |
| public: |
| /// This enum represents the kinds of recurrences that we support. |
| enum RecurrenceKind { |
| RK_NoRecurrence, ///< Not a recurrence. |
| RK_IntegerAdd, ///< Sum of integers. |
| RK_IntegerMult, ///< Product of integers. |
| RK_IntegerOr, ///< Bitwise or logical OR of numbers. |
| RK_IntegerAnd, ///< Bitwise or logical AND of numbers. |
| RK_IntegerXor, ///< Bitwise or logical XOR of numbers. |
| RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()). |
| RK_FloatAdd, ///< Sum of floats. |
| RK_FloatMult, ///< Product of floats. |
| RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()). |
| }; |
| |
| // This enum represents the kind of minmax recurrence. |
| enum MinMaxRecurrenceKind { |
| MRK_Invalid, |
| MRK_UIntMin, |
| MRK_UIntMax, |
| MRK_SIntMin, |
| MRK_SIntMax, |
| MRK_FloatMin, |
| MRK_FloatMax |
| }; |
| |
| RecurrenceDescriptor() = default; |
| |
| RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K, |
| FastMathFlags FMF, MinMaxRecurrenceKind MK, |
| Instruction *UAI, Type *RT, bool Signed, |
| SmallPtrSetImpl<Instruction *> &CI) |
| : StartValue(Start), LoopExitInstr(Exit), Kind(K), FMF(FMF), |
| MinMaxKind(MK), UnsafeAlgebraInst(UAI), RecurrenceType(RT), |
| IsSigned(Signed) { |
| CastInsts.insert(CI.begin(), CI.end()); |
| } |
| |
| /// This POD struct holds information about a potential recurrence operation. |
| class InstDesc { |
| public: |
| InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr) |
| : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid), |
| UnsafeAlgebraInst(UAI) {} |
| |
| InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr) |
| : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K), |
| UnsafeAlgebraInst(UAI) {} |
| |
| bool isRecurrence() { return IsRecurrence; } |
| |
| bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; } |
| |
| Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; } |
| |
| MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; } |
| |
| Instruction *getPatternInst() { return PatternLastInst; } |
| |
| private: |
| // Is this instruction a recurrence candidate. |
| bool IsRecurrence; |
| // The last instruction in a min/max pattern (select of the select(icmp()) |
| // pattern), or the current recurrence instruction otherwise. |
| Instruction *PatternLastInst; |
| // If this is a min/max pattern the comparison predicate. |
| MinMaxRecurrenceKind MinMaxKind; |
| // Recurrence has unsafe algebra. |
| Instruction *UnsafeAlgebraInst; |
| }; |
| |
| /// Returns a struct describing if the instruction 'I' can be a recurrence |
| /// variable of type 'Kind'. If the recurrence is a min/max pattern of |
| /// select(icmp()) this function advances the instruction pointer 'I' from the |
| /// compare instruction to the select instruction and stores this pointer in |
| /// 'PatternLastInst' member of the returned struct. |
| static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, |
| InstDesc &Prev, bool HasFunNoNaNAttr); |
| |
| /// Returns true if instruction I has multiple uses in Insts |
| static bool hasMultipleUsesOf(Instruction *I, |
| SmallPtrSetImpl<Instruction *> &Insts, |
| unsigned MaxNumUses); |
| |
| /// Returns true if all uses of the instruction I is within the Set. |
| static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set); |
| |
| /// Returns a struct describing if the instruction if the instruction is a |
| /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y) |
| /// or max(X, Y). |
| static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev); |
| |
| /// Returns a struct describing if the instruction is a |
| /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern. |
| static InstDesc isConditionalRdxPattern(RecurrenceKind Kind, Instruction *I); |
| |
| /// Returns identity corresponding to the RecurrenceKind. |
| static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp); |
| |
| /// Returns the opcode of binary operation corresponding to the |
| /// RecurrenceKind. |
| static unsigned getRecurrenceBinOp(RecurrenceKind Kind); |
| |
| /// Returns true if Phi is a reduction of type Kind and adds it to the |
| /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are |
| /// non-null, the minimal bit width needed to compute the reduction will be |
| /// computed. |
| static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop, |
| bool HasFunNoNaNAttr, |
| RecurrenceDescriptor &RedDes, |
| DemandedBits *DB = nullptr, |
| AssumptionCache *AC = nullptr, |
| DominatorTree *DT = nullptr); |
| |
| /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor |
| /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are |
| /// non-null, the minimal bit width needed to compute the reduction will be |
| /// computed. |
| static bool isReductionPHI(PHINode *Phi, Loop *TheLoop, |
| RecurrenceDescriptor &RedDes, |
| DemandedBits *DB = nullptr, |
| AssumptionCache *AC = nullptr, |
| DominatorTree *DT = nullptr); |
| |
| /// Returns true if Phi is a first-order recurrence. A first-order recurrence |
| /// is a non-reduction recurrence relation in which the value of the |
| /// recurrence in the current loop iteration equals a value defined in the |
| /// previous iteration. \p SinkAfter includes pairs of instructions where the |
| /// first will be rescheduled to appear after the second if/when the loop is |
| /// vectorized. It may be augmented with additional pairs if needed in order |
| /// to handle Phi as a first-order recurrence. |
| static bool |
| isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
| DenseMap<Instruction *, Instruction *> &SinkAfter, |
| DominatorTree *DT); |
| |
| RecurrenceKind getRecurrenceKind() { return Kind; } |
| |
| MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; } |
| |
| FastMathFlags getFastMathFlags() { return FMF; } |
| |
| TrackingVH<Value> getRecurrenceStartValue() { return StartValue; } |
| |
| Instruction *getLoopExitInstr() { return LoopExitInstr; } |
| |
| /// Returns true if the recurrence has unsafe algebra which requires a relaxed |
| /// floating-point model. |
| bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; } |
| |
| /// Returns first unsafe algebra instruction in the PHI node's use-chain. |
| Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; } |
| |
| /// Returns true if the recurrence kind is an integer kind. |
| static bool isIntegerRecurrenceKind(RecurrenceKind Kind); |
| |
| /// Returns true if the recurrence kind is a floating point kind. |
| static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind); |
| |
| /// Returns true if the recurrence kind is an arithmetic kind. |
| static bool isArithmeticRecurrenceKind(RecurrenceKind Kind); |
| |
| /// Returns the type of the recurrence. This type can be narrower than the |
| /// actual type of the Phi if the recurrence has been type-promoted. |
| Type *getRecurrenceType() { return RecurrenceType; } |
| |
| /// Returns a reference to the instructions used for type-promoting the |
| /// recurrence. |
| SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; } |
| |
| /// Returns true if all source operands of the recurrence are SExtInsts. |
| bool isSigned() { return IsSigned; } |
| |
| private: |
| // The starting value of the recurrence. |
| // It does not have to be zero! |
| TrackingVH<Value> StartValue; |
| // The instruction who's value is used outside the loop. |
| Instruction *LoopExitInstr = nullptr; |
| // The kind of the recurrence. |
| RecurrenceKind Kind = RK_NoRecurrence; |
| // The fast-math flags on the recurrent instructions. We propagate these |
| // fast-math flags into the vectorized FP instructions we generate. |
| FastMathFlags FMF; |
| // If this a min/max recurrence the kind of recurrence. |
| MinMaxRecurrenceKind MinMaxKind = MRK_Invalid; |
| // First occurrence of unasfe algebra in the PHI's use-chain. |
| Instruction *UnsafeAlgebraInst = nullptr; |
| // The type of the recurrence. |
| Type *RecurrenceType = nullptr; |
| // True if all source operands of the recurrence are SExtInsts. |
| bool IsSigned = false; |
| // Instructions used for type-promoting the recurrence. |
| SmallPtrSet<Instruction *, 8> CastInsts; |
| }; |
| |
| /// A struct for saving information about induction variables. |
| class InductionDescriptor { |
| public: |
| /// This enum represents the kinds of inductions that we support. |
| enum InductionKind { |
| IK_NoInduction, ///< Not an induction variable. |
| IK_IntInduction, ///< Integer induction variable. Step = C. |
| IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem). |
| IK_FpInduction ///< Floating point induction variable. |
| }; |
| |
| public: |
| /// Default constructor - creates an invalid induction. |
| InductionDescriptor() = default; |
| |
| /// Get the consecutive direction. Returns: |
| /// 0 - unknown or non-consecutive. |
| /// 1 - consecutive and increasing. |
| /// -1 - consecutive and decreasing. |
| int getConsecutiveDirection() const; |
| |
| Value *getStartValue() const { return StartValue; } |
| InductionKind getKind() const { return IK; } |
| const SCEV *getStep() const { return Step; } |
| BinaryOperator *getInductionBinOp() const { return InductionBinOp; } |
| ConstantInt *getConstIntStepValue() const; |
| |
| /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an |
| /// induction, the induction descriptor \p D will contain the data describing |
| /// this induction. If by some other means the caller has a better SCEV |
| /// expression for \p Phi than the one returned by the ScalarEvolution |
| /// analysis, it can be passed through \p Expr. If the def-use chain |
| /// associated with the phi includes casts (that we know we can ignore |
| /// under proper runtime checks), they are passed through \p CastsToIgnore. |
| static bool |
| isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
| InductionDescriptor &D, const SCEV *Expr = nullptr, |
| SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr); |
| |
| /// Returns true if \p Phi is a floating point induction in the loop \p L. |
| /// If \p Phi is an induction, the induction descriptor \p D will contain |
| /// the data describing this induction. |
| static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE, |
| InductionDescriptor &D); |
| |
| /// Returns true if \p Phi is a loop \p L induction, in the context associated |
| /// with the run-time predicate of PSE. If \p Assume is true, this can add |
| /// further SCEV predicates to \p PSE in order to prove that \p Phi is an |
| /// induction. |
| /// If \p Phi is an induction, \p D will contain the data describing this |
| /// induction. |
| static bool isInductionPHI(PHINode *Phi, const Loop *L, |
| PredicatedScalarEvolution &PSE, |
| InductionDescriptor &D, bool Assume = false); |
| |
| /// Returns true if the induction type is FP and the binary operator does |
| /// not have the "fast-math" property. Such operation requires a relaxed FP |
| /// mode. |
| bool hasUnsafeAlgebra() { |
| return (IK == IK_FpInduction) && InductionBinOp && |
| !cast<FPMathOperator>(InductionBinOp)->isFast(); |
| } |
| |
| /// Returns induction operator that does not have "fast-math" property |
| /// and requires FP unsafe mode. |
| Instruction *getUnsafeAlgebraInst() { |
| if (IK != IK_FpInduction) |
| return nullptr; |
| |
| if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast()) |
| return nullptr; |
| return InductionBinOp; |
| } |
| |
| /// Returns binary opcode of the induction operator. |
| Instruction::BinaryOps getInductionOpcode() const { |
| return InductionBinOp ? InductionBinOp->getOpcode() |
| : Instruction::BinaryOpsEnd; |
| } |
| |
| /// Returns a reference to the type cast instructions in the induction |
| /// update chain, that are redundant when guarded with a runtime |
| /// SCEV overflow check. |
| const SmallVectorImpl<Instruction *> &getCastInsts() const { |
| return RedundantCasts; |
| } |
| |
| private: |
| /// Private constructor - used by \c isInductionPHI. |
| InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step, |
| BinaryOperator *InductionBinOp = nullptr, |
| SmallVectorImpl<Instruction *> *Casts = nullptr); |
| |
| /// Start value. |
| TrackingVH<Value> StartValue; |
| /// Induction kind. |
| InductionKind IK = IK_NoInduction; |
| /// Step value. |
| const SCEV *Step = nullptr; |
| // Instruction that advances induction variable. |
| BinaryOperator *InductionBinOp = nullptr; |
| // Instructions used for type-casts of the induction variable, |
| // that are redundant when guarded with a runtime SCEV overflow check. |
| SmallVector<Instruction *, 2> RedundantCasts; |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H |