blob: 3c1d4278905fcfd0c823556b82ffaee2548bf974 [file] [log] [blame]
//===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "function returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_DERIVEDTYPES_H
#define LLVM_IR_DERIVEDTYPES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ScalableSize.h"
#include <cassert>
#include <cstdint>
namespace llvm {
class Value;
class APInt;
class LLVMContext;
/// Class to represent integer types. Note that this class is also used to
/// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
/// Int64Ty.
/// Integer representation type
class IntegerType : public Type {
friend class LLVMContextImpl;
protected:
explicit IntegerType(LLVMContext &C, unsigned NumBits) : Type(C, IntegerTyID){
setSubclassData(NumBits);
}
public:
/// This enum is just used to hold constants we need for IntegerType.
enum {
MIN_INT_BITS = 1, ///< Minimum number of bits that can be specified
MAX_INT_BITS = (1<<24)-1 ///< Maximum number of bits that can be specified
///< Note that bit width is stored in the Type classes SubclassData field
///< which has 24 bits. This yields a maximum bit width of 16,777,215
///< bits.
};
/// This static method is the primary way of constructing an IntegerType.
/// If an IntegerType with the same NumBits value was previously instantiated,
/// that instance will be returned. Otherwise a new one will be created. Only
/// one instance with a given NumBits value is ever created.
/// Get or create an IntegerType instance.
static IntegerType *get(LLVMContext &C, unsigned NumBits);
/// Get the number of bits in this IntegerType
unsigned getBitWidth() const { return getSubclassData(); }
/// Return a bitmask with ones set for all of the bits that can be set by an
/// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
uint64_t getBitMask() const {
return ~uint64_t(0UL) >> (64-getBitWidth());
}
/// Return a uint64_t with just the most significant bit set (the sign bit, if
/// the value is treated as a signed number).
uint64_t getSignBit() const {
return 1ULL << (getBitWidth()-1);
}
/// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
/// @returns a bit mask with ones set for all the bits of this type.
/// Get a bit mask for this type.
APInt getMask() const;
/// This method determines if the width of this IntegerType is a power-of-2
/// in terms of 8 bit bytes.
/// @returns true if this is a power-of-2 byte width.
/// Is this a power-of-2 byte-width IntegerType ?
bool isPowerOf2ByteWidth() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == IntegerTyID;
}
};
unsigned Type::getIntegerBitWidth() const {
return cast<IntegerType>(this)->getBitWidth();
}
/// Class to represent function types
///
class FunctionType : public Type {
FunctionType(Type *Result, ArrayRef<Type*> Params, bool IsVarArgs);
public:
FunctionType(const FunctionType &) = delete;
FunctionType &operator=(const FunctionType &) = delete;
/// This static method is the primary way of constructing a FunctionType.
static FunctionType *get(Type *Result,
ArrayRef<Type*> Params, bool isVarArg);
/// Create a FunctionType taking no parameters.
static FunctionType *get(Type *Result, bool isVarArg);
/// Return true if the specified type is valid as a return type.
static bool isValidReturnType(Type *RetTy);
/// Return true if the specified type is valid as an argument type.
static bool isValidArgumentType(Type *ArgTy);
bool isVarArg() const { return getSubclassData()!=0; }
Type *getReturnType() const { return ContainedTys[0]; }
using param_iterator = Type::subtype_iterator;
param_iterator param_begin() const { return ContainedTys + 1; }
param_iterator param_end() const { return &ContainedTys[NumContainedTys]; }
ArrayRef<Type *> params() const {
return makeArrayRef(param_begin(), param_end());
}
/// Parameter type accessors.
Type *getParamType(unsigned i) const { return ContainedTys[i+1]; }
/// Return the number of fixed parameters this function type requires.
/// This does not consider varargs.
unsigned getNumParams() const { return NumContainedTys - 1; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == FunctionTyID;
}
};
static_assert(alignof(FunctionType) >= alignof(Type *),
"Alignment sufficient for objects appended to FunctionType");
bool Type::isFunctionVarArg() const {
return cast<FunctionType>(this)->isVarArg();
}
Type *Type::getFunctionParamType(unsigned i) const {
return cast<FunctionType>(this)->getParamType(i);
}
unsigned Type::getFunctionNumParams() const {
return cast<FunctionType>(this)->getNumParams();
}
/// A handy container for a FunctionType+Callee-pointer pair, which can be
/// passed around as a single entity. This assists in replacing the use of
/// PointerType::getElementType() to access the function's type, since that's
/// slated for removal as part of the [opaque pointer types] project.
class FunctionCallee {
public:
// Allow implicit conversion from types which have a getFunctionType member
// (e.g. Function and InlineAsm).
template <typename T, typename U = decltype(&T::getFunctionType)>
FunctionCallee(T *Fn)
: FnTy(Fn ? Fn->getFunctionType() : nullptr), Callee(Fn) {}
FunctionCallee(FunctionType *FnTy, Value *Callee)
: FnTy(FnTy), Callee(Callee) {
assert((FnTy == nullptr) == (Callee == nullptr));
}
FunctionCallee(std::nullptr_t) {}
FunctionCallee() = default;
FunctionType *getFunctionType() { return FnTy; }
Value *getCallee() { return Callee; }
explicit operator bool() { return Callee; }
private:
FunctionType *FnTy = nullptr;
Value *Callee = nullptr;
};
/// Common super class of ArrayType, StructType and VectorType.
class CompositeType : public Type {
protected:
explicit CompositeType(LLVMContext &C, TypeID tid) : Type(C, tid) {}
public:
/// Given an index value into the type, return the type of the element.
Type *getTypeAtIndex(const Value *V) const;
Type *getTypeAtIndex(unsigned Idx) const;
bool indexValid(const Value *V) const;
bool indexValid(unsigned Idx) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID ||
T->getTypeID() == StructTyID ||
T->getTypeID() == VectorTyID;
}
};
/// Class to represent struct types. There are two different kinds of struct
/// types: Literal structs and Identified structs.
///
/// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
/// always have a body when created. You can get one of these by using one of
/// the StructType::get() forms.
///
/// Identified structs (e.g. %foo or %42) may optionally have a name and are not
/// uniqued. The names for identified structs are managed at the LLVMContext
/// level, so there can only be a single identified struct with a given name in
/// a particular LLVMContext. Identified structs may also optionally be opaque
/// (have no body specified). You get one of these by using one of the
/// StructType::create() forms.
///
/// Independent of what kind of struct you have, the body of a struct type are
/// laid out in memory consecutively with the elements directly one after the
/// other (if the struct is packed) or (if not packed) with padding between the
/// elements as defined by DataLayout (which is required to match what the code
/// generator for a target expects).
///
class StructType : public CompositeType {
StructType(LLVMContext &C) : CompositeType(C, StructTyID) {}
enum {
/// This is the contents of the SubClassData field.
SCDB_HasBody = 1,
SCDB_Packed = 2,
SCDB_IsLiteral = 4,
SCDB_IsSized = 8
};
/// For a named struct that actually has a name, this is a pointer to the
/// symbol table entry (maintained by LLVMContext) for the struct.
/// This is null if the type is an literal struct or if it is a identified
/// type that has an empty name.
void *SymbolTableEntry = nullptr;
public:
StructType(const StructType &) = delete;
StructType &operator=(const StructType &) = delete;
/// This creates an identified struct.
static StructType *create(LLVMContext &Context, StringRef Name);
static StructType *create(LLVMContext &Context);
static StructType *create(ArrayRef<Type *> Elements, StringRef Name,
bool isPacked = false);
static StructType *create(ArrayRef<Type *> Elements);
static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements,
StringRef Name, bool isPacked = false);
static StructType *create(LLVMContext &Context, ArrayRef<Type *> Elements);
template <class... Tys>
static typename std::enable_if<are_base_of<Type, Tys...>::value,
StructType *>::type
create(StringRef Name, Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
return create(StructFields, Name);
}
/// This static method is the primary way to create a literal StructType.
static StructType *get(LLVMContext &Context, ArrayRef<Type*> Elements,
bool isPacked = false);
/// Create an empty structure type.
static StructType *get(LLVMContext &Context, bool isPacked = false);
/// This static method is a convenience method for creating structure types by
/// specifying the elements as arguments. Note that this method always returns
/// a non-packed struct, and requires at least one element type.
template <class... Tys>
static typename std::enable_if<are_base_of<Type, Tys...>::value,
StructType *>::type
get(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
LLVMContext &Ctx = elt1->getContext();
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
return llvm::StructType::get(Ctx, StructFields);
}
bool isPacked() const { return (getSubclassData() & SCDB_Packed) != 0; }
/// Return true if this type is uniqued by structural equivalence, false if it
/// is a struct definition.
bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral) != 0; }
/// Return true if this is a type with an identity that has no body specified
/// yet. These prints as 'opaque' in .ll files.
bool isOpaque() const { return (getSubclassData() & SCDB_HasBody) == 0; }
/// isSized - Return true if this is a sized type.
bool isSized(SmallPtrSetImpl<Type *> *Visited = nullptr) const;
/// Return true if this is a named struct that has a non-empty name.
bool hasName() const { return SymbolTableEntry != nullptr; }
/// Return the name for this struct type if it has an identity.
/// This may return an empty string for an unnamed struct type. Do not call
/// this on an literal type.
StringRef getName() const;
/// Change the name of this type to the specified name, or to a name with a
/// suffix if there is a collision. Do not call this on an literal type.
void setName(StringRef Name);
/// Specify a body for an opaque identified type.
void setBody(ArrayRef<Type*> Elements, bool isPacked = false);
template <typename... Tys>
typename std::enable_if<are_base_of<Type, Tys...>::value, void>::type
setBody(Type *elt1, Tys *... elts) {
assert(elt1 && "Cannot create a struct type with no elements with this");
SmallVector<llvm::Type *, 8> StructFields({elt1, elts...});
setBody(StructFields);
}
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
// Iterator access to the elements.
using element_iterator = Type::subtype_iterator;
element_iterator element_begin() const { return ContainedTys; }
element_iterator element_end() const { return &ContainedTys[NumContainedTys];}
ArrayRef<Type *> const elements() const {
return makeArrayRef(element_begin(), element_end());
}
/// Return true if this is layout identical to the specified struct.
bool isLayoutIdentical(StructType *Other) const;
/// Random access to the elements
unsigned getNumElements() const { return NumContainedTys; }
Type *getElementType(unsigned N) const {
assert(N < NumContainedTys && "Element number out of range!");
return ContainedTys[N];
}
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == StructTyID;
}
};
StringRef Type::getStructName() const {
return cast<StructType>(this)->getName();
}
unsigned Type::getStructNumElements() const {
return cast<StructType>(this)->getNumElements();
}
Type *Type::getStructElementType(unsigned N) const {
return cast<StructType>(this)->getElementType(N);
}
/// This is the superclass of the array and vector type classes. Both of these
/// represent "arrays" in memory. The array type represents a specifically sized
/// array, and the vector type represents a specifically sized array that allows
/// for use of SIMD instructions. SequentialType holds the common features of
/// both, which stem from the fact that both lay their components out in memory
/// identically.
class SequentialType : public CompositeType {
Type *ContainedType; ///< Storage for the single contained type.
uint64_t NumElements;
protected:
SequentialType(TypeID TID, Type *ElType, uint64_t NumElements)
: CompositeType(ElType->getContext(), TID), ContainedType(ElType),
NumElements(NumElements) {
ContainedTys = &ContainedType;
NumContainedTys = 1;
}
public:
SequentialType(const SequentialType &) = delete;
SequentialType &operator=(const SequentialType &) = delete;
/// For scalable vectors, this will return the minimum number of elements
/// in the vector.
uint64_t getNumElements() const { return NumElements; }
Type *getElementType() const { return ContainedType; }
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID || T->getTypeID() == VectorTyID;
}
};
/// Class to represent array types.
class ArrayType : public SequentialType {
ArrayType(Type *ElType, uint64_t NumEl);
public:
ArrayType(const ArrayType &) = delete;
ArrayType &operator=(const ArrayType &) = delete;
/// This static method is the primary way to construct an ArrayType
static ArrayType *get(Type *ElementType, uint64_t NumElements);
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == ArrayTyID;
}
};
uint64_t Type::getArrayNumElements() const {
return cast<ArrayType>(this)->getNumElements();
}
/// Class to represent vector types.
class VectorType : public SequentialType {
/// A fully specified VectorType is of the form <vscale x n x Ty>. 'n' is the
/// minimum number of elements of type Ty contained within the vector, and
/// 'vscale x' indicates that the total element count is an integer multiple
/// of 'n', where the multiple is either guaranteed to be one, or is
/// statically unknown at compile time.
///
/// If the multiple is known to be 1, then the extra term is discarded in
/// textual IR:
///
/// <4 x i32> - a vector containing 4 i32s
/// <vscale x 4 x i32> - a vector containing an unknown integer multiple
/// of 4 i32s
VectorType(Type *ElType, unsigned NumEl, bool Scalable = false);
VectorType(Type *ElType, ElementCount EC);
// If true, the total number of elements is an unknown multiple of the
// minimum 'NumElements' from SequentialType. Otherwise the total number
// of elements is exactly equal to 'NumElements'.
bool Scalable;
public:
VectorType(const VectorType &) = delete;
VectorType &operator=(const VectorType &) = delete;
/// This static method is the primary way to construct an VectorType.
static VectorType *get(Type *ElementType, ElementCount EC);
static VectorType *get(Type *ElementType, unsigned NumElements,
bool Scalable = false) {
return VectorType::get(ElementType, {NumElements, Scalable});
}
/// This static method gets a VectorType with the same number of elements as
/// the input type, and the element type is an integer type of the same width
/// as the input element type.
static VectorType *getInteger(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert(EltBits && "Element size must be of a non-zero size");
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits);
return VectorType::get(EltTy, VTy->getElementCount());
}
/// This static method is like getInteger except that the element types are
/// twice as wide as the elements in the input type.
static VectorType *getExtendedElementVectorType(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits * 2);
return VectorType::get(EltTy, VTy->getElementCount());
}
/// This static method is like getInteger except that the element types are
/// half as wide as the elements in the input type.
static VectorType *getTruncatedElementVectorType(VectorType *VTy) {
unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
assert((EltBits & 1) == 0 &&
"Cannot truncate vector element with odd bit-width");
Type *EltTy = IntegerType::get(VTy->getContext(), EltBits / 2);
return VectorType::get(EltTy, VTy->getElementCount());
}
/// This static method returns a VectorType with half as many elements as the
/// input type and the same element type.
static VectorType *getHalfElementsVectorType(VectorType *VTy) {
auto EltCnt = VTy->getElementCount();
assert ((EltCnt.Min & 1) == 0 &&
"Cannot halve vector with odd number of elements.");
return VectorType::get(VTy->getElementType(), EltCnt/2);
}
/// This static method returns a VectorType with twice as many elements as the
/// input type and the same element type.
static VectorType *getDoubleElementsVectorType(VectorType *VTy) {
auto EltCnt = VTy->getElementCount();
assert((VTy->getNumElements() * 2ull) <= UINT_MAX &&
"Too many elements in vector");
return VectorType::get(VTy->getElementType(), EltCnt*2);
}
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Return an ElementCount instance to represent the (possibly scalable)
/// number of elements in the vector.
ElementCount getElementCount() const {
uint64_t MinimumEltCnt = getNumElements();
assert(MinimumEltCnt <= UINT_MAX && "Too many elements in vector");
return { (unsigned)MinimumEltCnt, Scalable };
}
/// Returns whether or not this is a scalable vector (meaning the total
/// element count is a multiple of the minimum).
bool isScalable() const {
return Scalable;
}
/// Return the minimum number of bits in the Vector type.
/// Returns zero when the vector is a vector of pointers.
unsigned getBitWidth() const {
return getNumElements() * getElementType()->getPrimitiveSizeInBits();
}
/// Methods for support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == VectorTyID;
}
};
unsigned Type::getVectorNumElements() const {
return cast<VectorType>(this)->getNumElements();
}
bool Type::getVectorIsScalable() const {
return cast<VectorType>(this)->isScalable();
}
/// Class to represent pointers.
class PointerType : public Type {
explicit PointerType(Type *ElType, unsigned AddrSpace);
Type *PointeeTy;
public:
PointerType(const PointerType &) = delete;
PointerType &operator=(const PointerType &) = delete;
/// This constructs a pointer to an object of the specified type in a numbered
/// address space.
static PointerType *get(Type *ElementType, unsigned AddressSpace);
/// This constructs a pointer to an object of the specified type in the
/// generic address space (address space zero).
static PointerType *getUnqual(Type *ElementType) {
return PointerType::get(ElementType, 0);
}
Type *getElementType() const { return PointeeTy; }
/// Return true if the specified type is valid as a element type.
static bool isValidElementType(Type *ElemTy);
/// Return true if we can load or store from a pointer to this type.
static bool isLoadableOrStorableType(Type *ElemTy);
/// Return the address space of the Pointer type.
inline unsigned getAddressSpace() const { return getSubclassData(); }
/// Implement support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Type *T) {
return T->getTypeID() == PointerTyID;
}
};
unsigned Type::getPointerAddressSpace() const {
return cast<PointerType>(getScalarType())->getAddressSpace();
}
} // end namespace llvm
#endif // LLVM_IR_DERIVEDTYPES_H