| //===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// |
| /// This file defines a set of templates that efficiently compute a dominator |
| /// tree over a generic graph. This is used typically in LLVM for fast |
| /// dominance queries on the CFG, but is fully generic w.r.t. the underlying |
| /// graph types. |
| /// |
| /// Unlike ADT/* graph algorithms, generic dominator tree has more requirements |
| /// on the graph's NodeRef. The NodeRef should be a pointer and, |
| /// NodeRef->getParent() must return the parent node that is also a pointer. |
| /// |
| /// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_SUPPORT_GENERICDOMTREE_H |
| #define LLVM_SUPPORT_GENERICDOMTREE_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/PointerIntPair.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Support/CFGUpdate.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <iterator> |
| #include <memory> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| template <typename NodeT, bool IsPostDom> |
| class DominatorTreeBase; |
| |
| namespace DomTreeBuilder { |
| template <typename DomTreeT> |
| struct SemiNCAInfo; |
| } // namespace DomTreeBuilder |
| |
| /// Base class for the actual dominator tree node. |
| template <class NodeT> class DomTreeNodeBase { |
| friend class PostDominatorTree; |
| friend class DominatorTreeBase<NodeT, false>; |
| friend class DominatorTreeBase<NodeT, true>; |
| friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>; |
| friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>; |
| |
| NodeT *TheBB; |
| DomTreeNodeBase *IDom; |
| unsigned Level; |
| std::vector<DomTreeNodeBase *> Children; |
| mutable unsigned DFSNumIn = ~0; |
| mutable unsigned DFSNumOut = ~0; |
| |
| public: |
| DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom) |
| : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {} |
| |
| using iterator = typename std::vector<DomTreeNodeBase *>::iterator; |
| using const_iterator = |
| typename std::vector<DomTreeNodeBase *>::const_iterator; |
| |
| iterator begin() { return Children.begin(); } |
| iterator end() { return Children.end(); } |
| const_iterator begin() const { return Children.begin(); } |
| const_iterator end() const { return Children.end(); } |
| |
| NodeT *getBlock() const { return TheBB; } |
| DomTreeNodeBase *getIDom() const { return IDom; } |
| unsigned getLevel() const { return Level; } |
| |
| const std::vector<DomTreeNodeBase *> &getChildren() const { return Children; } |
| |
| std::unique_ptr<DomTreeNodeBase> addChild( |
| std::unique_ptr<DomTreeNodeBase> C) { |
| Children.push_back(C.get()); |
| return C; |
| } |
| |
| size_t getNumChildren() const { return Children.size(); } |
| |
| void clearAllChildren() { Children.clear(); } |
| |
| bool compare(const DomTreeNodeBase *Other) const { |
| if (getNumChildren() != Other->getNumChildren()) |
| return true; |
| |
| if (Level != Other->Level) return true; |
| |
| SmallPtrSet<const NodeT *, 4> OtherChildren; |
| for (const DomTreeNodeBase *I : *Other) { |
| const NodeT *Nd = I->getBlock(); |
| OtherChildren.insert(Nd); |
| } |
| |
| for (const DomTreeNodeBase *I : *this) { |
| const NodeT *N = I->getBlock(); |
| if (OtherChildren.count(N) == 0) |
| return true; |
| } |
| return false; |
| } |
| |
| void setIDom(DomTreeNodeBase *NewIDom) { |
| assert(IDom && "No immediate dominator?"); |
| if (IDom == NewIDom) return; |
| |
| auto I = find(IDom->Children, this); |
| assert(I != IDom->Children.end() && |
| "Not in immediate dominator children set!"); |
| // I am no longer your child... |
| IDom->Children.erase(I); |
| |
| // Switch to new dominator |
| IDom = NewIDom; |
| IDom->Children.push_back(this); |
| |
| UpdateLevel(); |
| } |
| |
| /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes |
| /// in the dominator tree. They are only guaranteed valid if |
| /// updateDFSNumbers() has been called. |
| unsigned getDFSNumIn() const { return DFSNumIn; } |
| unsigned getDFSNumOut() const { return DFSNumOut; } |
| |
| private: |
| // Return true if this node is dominated by other. Use this only if DFS info |
| // is valid. |
| bool DominatedBy(const DomTreeNodeBase *other) const { |
| return this->DFSNumIn >= other->DFSNumIn && |
| this->DFSNumOut <= other->DFSNumOut; |
| } |
| |
| void UpdateLevel() { |
| assert(IDom); |
| if (Level == IDom->Level + 1) return; |
| |
| SmallVector<DomTreeNodeBase *, 64> WorkStack = {this}; |
| |
| while (!WorkStack.empty()) { |
| DomTreeNodeBase *Current = WorkStack.pop_back_val(); |
| Current->Level = Current->IDom->Level + 1; |
| |
| for (DomTreeNodeBase *C : *Current) { |
| assert(C->IDom); |
| if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C); |
| } |
| } |
| } |
| }; |
| |
| template <class NodeT> |
| raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) { |
| if (Node->getBlock()) |
| Node->getBlock()->printAsOperand(O, false); |
| else |
| O << " <<exit node>>"; |
| |
| O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} [" |
| << Node->getLevel() << "]\n"; |
| |
| return O; |
| } |
| |
| template <class NodeT> |
| void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O, |
| unsigned Lev) { |
| O.indent(2 * Lev) << "[" << Lev << "] " << N; |
| for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), |
| E = N->end(); |
| I != E; ++I) |
| PrintDomTree<NodeT>(*I, O, Lev + 1); |
| } |
| |
| namespace DomTreeBuilder { |
| // The routines below are provided in a separate header but referenced here. |
| template <typename DomTreeT> |
| void Calculate(DomTreeT &DT); |
| |
| template <typename DomTreeT> |
| void CalculateWithUpdates(DomTreeT &DT, |
| ArrayRef<typename DomTreeT::UpdateType> Updates); |
| |
| template <typename DomTreeT> |
| void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| typename DomTreeT::NodePtr To); |
| |
| template <typename DomTreeT> |
| void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, |
| typename DomTreeT::NodePtr To); |
| |
| template <typename DomTreeT> |
| void ApplyUpdates(DomTreeT &DT, |
| ArrayRef<typename DomTreeT::UpdateType> Updates); |
| |
| template <typename DomTreeT> |
| bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL); |
| } // namespace DomTreeBuilder |
| |
| /// Core dominator tree base class. |
| /// |
| /// This class is a generic template over graph nodes. It is instantiated for |
| /// various graphs in the LLVM IR or in the code generator. |
| template <typename NodeT, bool IsPostDom> |
| class DominatorTreeBase { |
| public: |
| static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value, |
| "Currently DominatorTreeBase supports only pointer nodes"); |
| using NodeType = NodeT; |
| using NodePtr = NodeT *; |
| using ParentPtr = decltype(std::declval<NodeT *>()->getParent()); |
| static_assert(std::is_pointer<ParentPtr>::value, |
| "Currently NodeT's parent must be a pointer type"); |
| using ParentType = typename std::remove_pointer<ParentPtr>::type; |
| static constexpr bool IsPostDominator = IsPostDom; |
| |
| using UpdateType = cfg::Update<NodePtr>; |
| using UpdateKind = cfg::UpdateKind; |
| static constexpr UpdateKind Insert = UpdateKind::Insert; |
| static constexpr UpdateKind Delete = UpdateKind::Delete; |
| |
| enum class VerificationLevel { Fast, Basic, Full }; |
| |
| protected: |
| // Dominators always have a single root, postdominators can have more. |
| SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots; |
| |
| using DomTreeNodeMapType = |
| DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>; |
| DomTreeNodeMapType DomTreeNodes; |
| DomTreeNodeBase<NodeT> *RootNode; |
| ParentPtr Parent = nullptr; |
| |
| mutable bool DFSInfoValid = false; |
| mutable unsigned int SlowQueries = 0; |
| |
| friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>; |
| |
| public: |
| DominatorTreeBase() {} |
| |
| DominatorTreeBase(DominatorTreeBase &&Arg) |
| : Roots(std::move(Arg.Roots)), |
| DomTreeNodes(std::move(Arg.DomTreeNodes)), |
| RootNode(Arg.RootNode), |
| Parent(Arg.Parent), |
| DFSInfoValid(Arg.DFSInfoValid), |
| SlowQueries(Arg.SlowQueries) { |
| Arg.wipe(); |
| } |
| |
| DominatorTreeBase &operator=(DominatorTreeBase &&RHS) { |
| Roots = std::move(RHS.Roots); |
| DomTreeNodes = std::move(RHS.DomTreeNodes); |
| RootNode = RHS.RootNode; |
| Parent = RHS.Parent; |
| DFSInfoValid = RHS.DFSInfoValid; |
| SlowQueries = RHS.SlowQueries; |
| RHS.wipe(); |
| return *this; |
| } |
| |
| DominatorTreeBase(const DominatorTreeBase &) = delete; |
| DominatorTreeBase &operator=(const DominatorTreeBase &) = delete; |
| |
| /// getRoots - Return the root blocks of the current CFG. This may include |
| /// multiple blocks if we are computing post dominators. For forward |
| /// dominators, this will always be a single block (the entry node). |
| /// |
| const SmallVectorImpl<NodeT *> &getRoots() const { return Roots; } |
| |
| /// isPostDominator - Returns true if analysis based of postdoms |
| /// |
| bool isPostDominator() const { return IsPostDominator; } |
| |
| /// compare - Return false if the other dominator tree base matches this |
| /// dominator tree base. Otherwise return true. |
| bool compare(const DominatorTreeBase &Other) const { |
| if (Parent != Other.Parent) return true; |
| |
| if (Roots.size() != Other.Roots.size()) |
| return true; |
| |
| if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin())) |
| return true; |
| |
| const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; |
| if (DomTreeNodes.size() != OtherDomTreeNodes.size()) |
| return true; |
| |
| for (const auto &DomTreeNode : DomTreeNodes) { |
| NodeT *BB = DomTreeNode.first; |
| typename DomTreeNodeMapType::const_iterator OI = |
| OtherDomTreeNodes.find(BB); |
| if (OI == OtherDomTreeNodes.end()) |
| return true; |
| |
| DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second; |
| DomTreeNodeBase<NodeT> &OtherNd = *OI->second; |
| |
| if (MyNd.compare(&OtherNd)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void releaseMemory() { reset(); } |
| |
| /// getNode - return the (Post)DominatorTree node for the specified basic |
| /// block. This is the same as using operator[] on this class. The result |
| /// may (but is not required to) be null for a forward (backwards) |
| /// statically unreachable block. |
| DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const { |
| auto I = DomTreeNodes.find(BB); |
| if (I != DomTreeNodes.end()) |
| return I->second.get(); |
| return nullptr; |
| } |
| |
| /// See getNode. |
| DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const { |
| return getNode(BB); |
| } |
| |
| /// getRootNode - This returns the entry node for the CFG of the function. If |
| /// this tree represents the post-dominance relations for a function, however, |
| /// this root may be a node with the block == NULL. This is the case when |
| /// there are multiple exit nodes from a particular function. Consumers of |
| /// post-dominance information must be capable of dealing with this |
| /// possibility. |
| /// |
| DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } |
| const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; } |
| |
| /// Get all nodes dominated by R, including R itself. |
| void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const { |
| Result.clear(); |
| const DomTreeNodeBase<NodeT> *RN = getNode(R); |
| if (!RN) |
| return; // If R is unreachable, it will not be present in the DOM tree. |
| SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL; |
| WL.push_back(RN); |
| |
| while (!WL.empty()) { |
| const DomTreeNodeBase<NodeT> *N = WL.pop_back_val(); |
| Result.push_back(N->getBlock()); |
| WL.append(N->begin(), N->end()); |
| } |
| } |
| |
| /// properlyDominates - Returns true iff A dominates B and A != B. |
| /// Note that this is not a constant time operation! |
| /// |
| bool properlyDominates(const DomTreeNodeBase<NodeT> *A, |
| const DomTreeNodeBase<NodeT> *B) const { |
| if (!A || !B) |
| return false; |
| if (A == B) |
| return false; |
| return dominates(A, B); |
| } |
| |
| bool properlyDominates(const NodeT *A, const NodeT *B) const; |
| |
| /// isReachableFromEntry - Return true if A is dominated by the entry |
| /// block of the function containing it. |
| bool isReachableFromEntry(const NodeT *A) const { |
| assert(!this->isPostDominator() && |
| "This is not implemented for post dominators"); |
| return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); |
| } |
| |
| bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; } |
| |
| /// dominates - Returns true iff A dominates B. Note that this is not a |
| /// constant time operation! |
| /// |
| bool dominates(const DomTreeNodeBase<NodeT> *A, |
| const DomTreeNodeBase<NodeT> *B) const { |
| // A node trivially dominates itself. |
| if (B == A) |
| return true; |
| |
| // An unreachable node is dominated by anything. |
| if (!isReachableFromEntry(B)) |
| return true; |
| |
| // And dominates nothing. |
| if (!isReachableFromEntry(A)) |
| return false; |
| |
| if (B->getIDom() == A) return true; |
| |
| if (A->getIDom() == B) return false; |
| |
| // A can only dominate B if it is higher in the tree. |
| if (A->getLevel() >= B->getLevel()) return false; |
| |
| // Compare the result of the tree walk and the dfs numbers, if expensive |
| // checks are enabled. |
| #ifdef EXPENSIVE_CHECKS |
| assert((!DFSInfoValid || |
| (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && |
| "Tree walk disagrees with dfs numbers!"); |
| #endif |
| |
| if (DFSInfoValid) |
| return B->DominatedBy(A); |
| |
| // If we end up with too many slow queries, just update the |
| // DFS numbers on the theory that we are going to keep querying. |
| SlowQueries++; |
| if (SlowQueries > 32) { |
| updateDFSNumbers(); |
| return B->DominatedBy(A); |
| } |
| |
| return dominatedBySlowTreeWalk(A, B); |
| } |
| |
| bool dominates(const NodeT *A, const NodeT *B) const; |
| |
| NodeT *getRoot() const { |
| assert(this->Roots.size() == 1 && "Should always have entry node!"); |
| return this->Roots[0]; |
| } |
| |
| /// findNearestCommonDominator - Find nearest common dominator basic block |
| /// for basic block A and B. If there is no such block then return nullptr. |
| NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const { |
| assert(A && B && "Pointers are not valid"); |
| assert(A->getParent() == B->getParent() && |
| "Two blocks are not in same function"); |
| |
| // If either A or B is a entry block then it is nearest common dominator |
| // (for forward-dominators). |
| if (!isPostDominator()) { |
| NodeT &Entry = A->getParent()->front(); |
| if (A == &Entry || B == &Entry) |
| return &Entry; |
| } |
| |
| DomTreeNodeBase<NodeT> *NodeA = getNode(A); |
| DomTreeNodeBase<NodeT> *NodeB = getNode(B); |
| |
| if (!NodeA || !NodeB) return nullptr; |
| |
| // Use level information to go up the tree until the levels match. Then |
| // continue going up til we arrive at the same node. |
| while (NodeA && NodeA != NodeB) { |
| if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB); |
| |
| NodeA = NodeA->IDom; |
| } |
| |
| return NodeA ? NodeA->getBlock() : nullptr; |
| } |
| |
| const NodeT *findNearestCommonDominator(const NodeT *A, |
| const NodeT *B) const { |
| // Cast away the const qualifiers here. This is ok since |
| // const is re-introduced on the return type. |
| return findNearestCommonDominator(const_cast<NodeT *>(A), |
| const_cast<NodeT *>(B)); |
| } |
| |
| bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const { |
| return isPostDominator() && !A->getBlock(); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // API to update (Post)DominatorTree information based on modifications to |
| // the CFG... |
| |
| /// Inform the dominator tree about a sequence of CFG edge insertions and |
| /// deletions and perform a batch update on the tree. |
| /// |
| /// This function should be used when there were multiple CFG updates after |
| /// the last dominator tree update. It takes care of performing the updates |
| /// in sync with the CFG and optimizes away the redundant operations that |
| /// cancel each other. |
| /// The functions expects the sequence of updates to be balanced. Eg.: |
| /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because |
| /// logically it results in a single insertions. |
| /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make |
| /// sense to insert the same edge twice. |
| /// |
| /// What's more, the functions assumes that it's safe to ask every node in the |
| /// CFG about its children and inverse children. This implies that deletions |
| /// of CFG edges must not delete the CFG nodes before calling this function. |
| /// |
| /// The applyUpdates function can reorder the updates and remove redundant |
| /// ones internally. The batch updater is also able to detect sequences of |
| /// zero and exactly one update -- it's optimized to do less work in these |
| /// cases. |
| /// |
| /// Note that for postdominators it automatically takes care of applying |
| /// updates on reverse edges internally (so there's no need to swap the |
| /// From and To pointers when constructing DominatorTree::UpdateType). |
| /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T> |
| /// with the same template parameter T. |
| /// |
| /// \param Updates An unordered sequence of updates to perform. |
| /// |
| void applyUpdates(ArrayRef<UpdateType> Updates) { |
| DomTreeBuilder::ApplyUpdates(*this, Updates); |
| } |
| |
| /// Inform the dominator tree about a CFG edge insertion and update the tree. |
| /// |
| /// This function has to be called just before or just after making the update |
| /// on the actual CFG. There cannot be any other updates that the dominator |
| /// tree doesn't know about. |
| /// |
| /// Note that for postdominators it automatically takes care of inserting |
| /// a reverse edge internally (so there's no need to swap the parameters). |
| /// |
| void insertEdge(NodeT *From, NodeT *To) { |
| assert(From); |
| assert(To); |
| assert(From->getParent() == Parent); |
| assert(To->getParent() == Parent); |
| DomTreeBuilder::InsertEdge(*this, From, To); |
| } |
| |
| /// Inform the dominator tree about a CFG edge deletion and update the tree. |
| /// |
| /// This function has to be called just after making the update on the actual |
| /// CFG. An internal functions checks if the edge doesn't exist in the CFG in |
| /// DEBUG mode. There cannot be any other updates that the |
| /// dominator tree doesn't know about. |
| /// |
| /// Note that for postdominators it automatically takes care of deleting |
| /// a reverse edge internally (so there's no need to swap the parameters). |
| /// |
| void deleteEdge(NodeT *From, NodeT *To) { |
| assert(From); |
| assert(To); |
| assert(From->getParent() == Parent); |
| assert(To->getParent() == Parent); |
| DomTreeBuilder::DeleteEdge(*this, From, To); |
| } |
| |
| /// Add a new node to the dominator tree information. |
| /// |
| /// This creates a new node as a child of DomBB dominator node, linking it |
| /// into the children list of the immediate dominator. |
| /// |
| /// \param BB New node in CFG. |
| /// \param DomBB CFG node that is dominator for BB. |
| /// \returns New dominator tree node that represents new CFG node. |
| /// |
| DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { |
| assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
| DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); |
| assert(IDomNode && "Not immediate dominator specified for block!"); |
| DFSInfoValid = false; |
| return (DomTreeNodes[BB] = IDomNode->addChild( |
| llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get(); |
| } |
| |
| /// Add a new node to the forward dominator tree and make it a new root. |
| /// |
| /// \param BB New node in CFG. |
| /// \returns New dominator tree node that represents new CFG node. |
| /// |
| DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) { |
| assert(getNode(BB) == nullptr && "Block already in dominator tree!"); |
| assert(!this->isPostDominator() && |
| "Cannot change root of post-dominator tree"); |
| DFSInfoValid = false; |
| DomTreeNodeBase<NodeT> *NewNode = (DomTreeNodes[BB] = |
| llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr)).get(); |
| if (Roots.empty()) { |
| addRoot(BB); |
| } else { |
| assert(Roots.size() == 1); |
| NodeT *OldRoot = Roots.front(); |
| auto &OldNode = DomTreeNodes[OldRoot]; |
| OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot])); |
| OldNode->IDom = NewNode; |
| OldNode->UpdateLevel(); |
| Roots[0] = BB; |
| } |
| return RootNode = NewNode; |
| } |
| |
| /// changeImmediateDominator - This method is used to update the dominator |
| /// tree information when a node's immediate dominator changes. |
| /// |
| void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, |
| DomTreeNodeBase<NodeT> *NewIDom) { |
| assert(N && NewIDom && "Cannot change null node pointers!"); |
| DFSInfoValid = false; |
| N->setIDom(NewIDom); |
| } |
| |
| void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { |
| changeImmediateDominator(getNode(BB), getNode(NewBB)); |
| } |
| |
| /// eraseNode - Removes a node from the dominator tree. Block must not |
| /// dominate any other blocks. Removes node from its immediate dominator's |
| /// children list. Deletes dominator node associated with basic block BB. |
| void eraseNode(NodeT *BB) { |
| DomTreeNodeBase<NodeT> *Node = getNode(BB); |
| assert(Node && "Removing node that isn't in dominator tree."); |
| assert(Node->getChildren().empty() && "Node is not a leaf node."); |
| |
| DFSInfoValid = false; |
| |
| // Remove node from immediate dominator's children list. |
| DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); |
| if (IDom) { |
| const auto I = find(IDom->Children, Node); |
| assert(I != IDom->Children.end() && |
| "Not in immediate dominator children set!"); |
| // I am no longer your child... |
| IDom->Children.erase(I); |
| } |
| |
| DomTreeNodes.erase(BB); |
| |
| if (!IsPostDom) return; |
| |
| // Remember to update PostDominatorTree roots. |
| auto RIt = llvm::find(Roots, BB); |
| if (RIt != Roots.end()) { |
| std::swap(*RIt, Roots.back()); |
| Roots.pop_back(); |
| } |
| } |
| |
| /// splitBlock - BB is split and now it has one successor. Update dominator |
| /// tree to reflect this change. |
| void splitBlock(NodeT *NewBB) { |
| if (IsPostDominator) |
| Split<Inverse<NodeT *>>(NewBB); |
| else |
| Split<NodeT *>(NewBB); |
| } |
| |
| /// print - Convert to human readable form |
| /// |
| void print(raw_ostream &O) const { |
| O << "=============================--------------------------------\n"; |
| if (IsPostDominator) |
| O << "Inorder PostDominator Tree: "; |
| else |
| O << "Inorder Dominator Tree: "; |
| if (!DFSInfoValid) |
| O << "DFSNumbers invalid: " << SlowQueries << " slow queries."; |
| O << "\n"; |
| |
| // The postdom tree can have a null root if there are no returns. |
| if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1); |
| if (IsPostDominator) { |
| O << "Roots: "; |
| for (const NodePtr Block : Roots) { |
| Block->printAsOperand(O, false); |
| O << " "; |
| } |
| O << "\n"; |
| } |
| } |
| |
| public: |
| /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking |
| /// dominator tree in dfs order. |
| void updateDFSNumbers() const { |
| if (DFSInfoValid) { |
| SlowQueries = 0; |
| return; |
| } |
| |
| SmallVector<std::pair<const DomTreeNodeBase<NodeT> *, |
| typename DomTreeNodeBase<NodeT>::const_iterator>, |
| 32> WorkStack; |
| |
| const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode(); |
| assert((!Parent || ThisRoot) && "Empty constructed DomTree"); |
| if (!ThisRoot) |
| return; |
| |
| // Both dominators and postdominators have a single root node. In the case |
| // case of PostDominatorTree, this node is a virtual root. |
| WorkStack.push_back({ThisRoot, ThisRoot->begin()}); |
| |
| unsigned DFSNum = 0; |
| ThisRoot->DFSNumIn = DFSNum++; |
| |
| while (!WorkStack.empty()) { |
| const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; |
| const auto ChildIt = WorkStack.back().second; |
| |
| // If we visited all of the children of this node, "recurse" back up the |
| // stack setting the DFOutNum. |
| if (ChildIt == Node->end()) { |
| Node->DFSNumOut = DFSNum++; |
| WorkStack.pop_back(); |
| } else { |
| // Otherwise, recursively visit this child. |
| const DomTreeNodeBase<NodeT> *Child = *ChildIt; |
| ++WorkStack.back().second; |
| |
| WorkStack.push_back({Child, Child->begin()}); |
| Child->DFSNumIn = DFSNum++; |
| } |
| } |
| |
| SlowQueries = 0; |
| DFSInfoValid = true; |
| } |
| |
| /// recalculate - compute a dominator tree for the given function |
| void recalculate(ParentType &Func) { |
| Parent = &Func; |
| DomTreeBuilder::Calculate(*this); |
| } |
| |
| void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) { |
| Parent = &Func; |
| DomTreeBuilder::CalculateWithUpdates(*this, Updates); |
| } |
| |
| /// verify - checks if the tree is correct. There are 3 level of verification: |
| /// - Full -- verifies if the tree is correct by making sure all the |
| /// properties (including the parent and the sibling property) |
| /// hold. |
| /// Takes O(N^3) time. |
| /// |
| /// - Basic -- checks if the tree is correct, but compares it to a freshly |
| /// constructed tree instead of checking the sibling property. |
| /// Takes O(N^2) time. |
| /// |
| /// - Fast -- checks basic tree structure and compares it with a freshly |
| /// constructed tree. |
| /// Takes O(N^2) time worst case, but is faster in practise (same |
| /// as tree construction). |
| bool verify(VerificationLevel VL = VerificationLevel::Full) const { |
| return DomTreeBuilder::Verify(*this, VL); |
| } |
| |
| protected: |
| void addRoot(NodeT *BB) { this->Roots.push_back(BB); } |
| |
| void reset() { |
| DomTreeNodes.clear(); |
| Roots.clear(); |
| RootNode = nullptr; |
| Parent = nullptr; |
| DFSInfoValid = false; |
| SlowQueries = 0; |
| } |
| |
| // NewBB is split and now it has one successor. Update dominator tree to |
| // reflect this change. |
| template <class N> |
| void Split(typename GraphTraits<N>::NodeRef NewBB) { |
| using GraphT = GraphTraits<N>; |
| using NodeRef = typename GraphT::NodeRef; |
| assert(std::distance(GraphT::child_begin(NewBB), |
| GraphT::child_end(NewBB)) == 1 && |
| "NewBB should have a single successor!"); |
| NodeRef NewBBSucc = *GraphT::child_begin(NewBB); |
| |
| std::vector<NodeRef> PredBlocks; |
| for (const auto &Pred : children<Inverse<N>>(NewBB)) |
| PredBlocks.push_back(Pred); |
| |
| assert(!PredBlocks.empty() && "No predblocks?"); |
| |
| bool NewBBDominatesNewBBSucc = true; |
| for (const auto &Pred : children<Inverse<N>>(NewBBSucc)) { |
| if (Pred != NewBB && !dominates(NewBBSucc, Pred) && |
| isReachableFromEntry(Pred)) { |
| NewBBDominatesNewBBSucc = false; |
| break; |
| } |
| } |
| |
| // Find NewBB's immediate dominator and create new dominator tree node for |
| // NewBB. |
| NodeT *NewBBIDom = nullptr; |
| unsigned i = 0; |
| for (i = 0; i < PredBlocks.size(); ++i) |
| if (isReachableFromEntry(PredBlocks[i])) { |
| NewBBIDom = PredBlocks[i]; |
| break; |
| } |
| |
| // It's possible that none of the predecessors of NewBB are reachable; |
| // in that case, NewBB itself is unreachable, so nothing needs to be |
| // changed. |
| if (!NewBBIDom) return; |
| |
| for (i = i + 1; i < PredBlocks.size(); ++i) { |
| if (isReachableFromEntry(PredBlocks[i])) |
| NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]); |
| } |
| |
| // Create the new dominator tree node... and set the idom of NewBB. |
| DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom); |
| |
| // If NewBB strictly dominates other blocks, then it is now the immediate |
| // dominator of NewBBSucc. Update the dominator tree as appropriate. |
| if (NewBBDominatesNewBBSucc) { |
| DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc); |
| changeImmediateDominator(NewBBSuccNode, NewBBNode); |
| } |
| } |
| |
| private: |
| bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, |
| const DomTreeNodeBase<NodeT> *B) const { |
| assert(A != B); |
| assert(isReachableFromEntry(B)); |
| assert(isReachableFromEntry(A)); |
| |
| const unsigned ALevel = A->getLevel(); |
| const DomTreeNodeBase<NodeT> *IDom; |
| |
| // Don't walk nodes above A's subtree. When we reach A's level, we must |
| // either find A or be in some other subtree not dominated by A. |
| while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel) |
| B = IDom; // Walk up the tree |
| |
| return B == A; |
| } |
| |
| /// Wipe this tree's state without releasing any resources. |
| /// |
| /// This is essentially a post-move helper only. It leaves the object in an |
| /// assignable and destroyable state, but otherwise invalid. |
| void wipe() { |
| DomTreeNodes.clear(); |
| RootNode = nullptr; |
| Parent = nullptr; |
| } |
| }; |
| |
| template <typename T> |
| using DomTreeBase = DominatorTreeBase<T, false>; |
| |
| template <typename T> |
| using PostDomTreeBase = DominatorTreeBase<T, true>; |
| |
| // These two functions are declared out of line as a workaround for building |
| // with old (< r147295) versions of clang because of pr11642. |
| template <typename NodeT, bool IsPostDom> |
| bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A, |
| const NodeT *B) const { |
| if (A == B) |
| return true; |
| |
| // Cast away the const qualifiers here. This is ok since |
| // this function doesn't actually return the values returned |
| // from getNode. |
| return dominates(getNode(const_cast<NodeT *>(A)), |
| getNode(const_cast<NodeT *>(B))); |
| } |
| template <typename NodeT, bool IsPostDom> |
| bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates( |
| const NodeT *A, const NodeT *B) const { |
| if (A == B) |
| return false; |
| |
| // Cast away the const qualifiers here. This is ok since |
| // this function doesn't actually return the values returned |
| // from getNode. |
| return dominates(getNode(const_cast<NodeT *>(A)), |
| getNode(const_cast<NodeT *>(B))); |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_SUPPORT_GENERICDOMTREE_H |