blob: 8e19bb6293947b6827f155a2f402b2f8343106aa [file] [log] [blame]
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
/*
* Pre-requisites: headers required by header of this unit
*/
#include "include/i2caux_interface.h"
#include "engine.h"
#include "i2c_engine.h"
/*
* Header of this unit
*/
#include "i2c_sw_engine.h"
/*
* Post-requisites: headers required by this unit
*/
/*
* This unit
*/
#define SCL false
#define SDA true
static inline bool read_bit_from_ddc(
struct ddc *ddc,
bool data_nor_clock)
{
uint32_t value = 0;
if (data_nor_clock)
dal_gpio_get_value(ddc->pin_data, &value);
else
dal_gpio_get_value(ddc->pin_clock, &value);
return (value != 0);
}
static inline void write_bit_to_ddc(
struct ddc *ddc,
bool data_nor_clock,
bool bit)
{
uint32_t value = bit ? 1 : 0;
if (data_nor_clock)
dal_gpio_set_value(ddc->pin_data, value);
else
dal_gpio_set_value(ddc->pin_clock, value);
}
static bool wait_for_scl_high(
struct dc_context *ctx,
struct ddc *ddc,
uint16_t clock_delay_div_4)
{
uint32_t scl_retry = 0;
uint32_t scl_retry_max = I2C_SW_TIMEOUT_DELAY / clock_delay_div_4;
udelay(clock_delay_div_4);
/* 3 milliseconds delay
* to wake up some displays from "low power" state.
*/
do {
if (read_bit_from_ddc(ddc, SCL))
return true;
udelay(clock_delay_div_4);
++scl_retry;
} while (scl_retry <= scl_retry_max);
return false;
}
static bool start_sync(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4)
{
uint32_t retry = 0;
/* The I2C communications start signal is:
* the SDA going low from high, while the SCL is high. */
write_bit_to_ddc(ddc_handle, SCL, true);
udelay(clock_delay_div_4);
do {
write_bit_to_ddc(ddc_handle, SDA, true);
if (!read_bit_from_ddc(ddc_handle, SDA)) {
++retry;
continue;
}
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
break;
write_bit_to_ddc(ddc_handle, SDA, false);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, false);
udelay(clock_delay_div_4);
return true;
} while (retry <= I2C_SW_RETRIES);
return false;
}
static bool stop_sync(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4)
{
uint32_t retry = 0;
/* The I2C communications stop signal is:
* the SDA going high from low, while the SCL is high. */
write_bit_to_ddc(ddc_handle, SCL, false);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SDA, false);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
return false;
write_bit_to_ddc(ddc_handle, SDA, true);
do {
udelay(clock_delay_div_4);
if (read_bit_from_ddc(ddc_handle, SDA))
return true;
++retry;
} while (retry <= 2);
return false;
}
static bool write_byte(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4,
uint8_t byte)
{
int32_t shift = 7;
bool ack;
/* bits are transmitted serially, starting from MSB */
do {
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SDA, (byte >> shift) & 1);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
return false;
write_bit_to_ddc(ddc_handle, SCL, false);
--shift;
} while (shift >= 0);
/* The display sends ACK by preventing the SDA from going high
* after the SCL pulse we use to send our last data bit.
* If the SDA goes high after that bit, it's a NACK */
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SDA, true);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
return false;
/* read ACK bit */
ack = !read_bit_from_ddc(ddc_handle, SDA);
udelay(clock_delay_div_4 << 1);
write_bit_to_ddc(ddc_handle, SCL, false);
udelay(clock_delay_div_4 << 1);
return ack;
}
static bool read_byte(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4,
uint8_t *byte,
bool more)
{
int32_t shift = 7;
uint8_t data = 0;
/* The data bits are read from MSB to LSB;
* bit is read while SCL is high */
do {
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
return false;
if (read_bit_from_ddc(ddc_handle, SDA))
data |= (1 << shift);
write_bit_to_ddc(ddc_handle, SCL, false);
udelay(clock_delay_div_4 << 1);
--shift;
} while (shift >= 0);
/* read only whole byte */
*byte = data;
udelay(clock_delay_div_4);
/* send the acknowledge bit:
* SDA low means ACK, SDA high means NACK */
write_bit_to_ddc(ddc_handle, SDA, !more);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SCL, true);
if (!wait_for_scl_high(ctx, ddc_handle, clock_delay_div_4))
return false;
write_bit_to_ddc(ddc_handle, SCL, false);
udelay(clock_delay_div_4);
write_bit_to_ddc(ddc_handle, SDA, true);
udelay(clock_delay_div_4);
return true;
}
static bool i2c_write(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4,
uint8_t address,
uint32_t length,
const uint8_t *data)
{
uint32_t i = 0;
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, address))
return false;
while (i < length) {
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, data[i]))
return false;
++i;
}
return true;
}
static bool i2c_read(
struct dc_context *ctx,
struct ddc *ddc_handle,
uint16_t clock_delay_div_4,
uint8_t address,
uint32_t length,
uint8_t *data)
{
uint32_t i = 0;
if (!write_byte(ctx, ddc_handle, clock_delay_div_4, address))
return false;
while (i < length) {
if (!read_byte(ctx, ddc_handle, clock_delay_div_4, data + i,
i < length - 1))
return false;
++i;
}
return true;
}
/*
* @brief
* Cast 'struct i2c_engine *'
* to 'struct i2c_sw_engine *'
*/
#define FROM_I2C_ENGINE(ptr) \
container_of((ptr), struct i2c_sw_engine, base)
/*
* @brief
* Cast 'struct engine *'
* to 'struct i2c_sw_engine *'
*/
#define FROM_ENGINE(ptr) \
FROM_I2C_ENGINE(container_of((ptr), struct i2c_engine, base))
enum i2caux_engine_type dal_i2c_sw_engine_get_engine_type(
const struct engine *engine)
{
return I2CAUX_ENGINE_TYPE_I2C_SW;
}
bool dal_i2c_sw_engine_submit_request(
struct engine *engine,
struct i2caux_transaction_request *i2caux_request,
bool middle_of_transaction)
{
struct i2c_sw_engine *sw_engine = FROM_ENGINE(engine);
struct i2c_engine *base = &sw_engine->base;
struct i2c_request_transaction_data request;
bool operation_succeeded = false;
if (i2caux_request->operation == I2CAUX_TRANSACTION_READ)
request.action = middle_of_transaction ?
I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT :
I2CAUX_TRANSACTION_ACTION_I2C_READ;
else if (i2caux_request->operation == I2CAUX_TRANSACTION_WRITE)
request.action = middle_of_transaction ?
I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT :
I2CAUX_TRANSACTION_ACTION_I2C_WRITE;
else {
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_INVALID_OPERATION;
/* in DAL2, there was no "return false" */
return false;
}
request.address = (uint8_t)i2caux_request->payload.address;
request.length = i2caux_request->payload.length;
request.data = i2caux_request->payload.data;
base->funcs->submit_channel_request(base, &request);
if ((request.status == I2C_CHANNEL_OPERATION_ENGINE_BUSY) ||
(request.status == I2C_CHANNEL_OPERATION_FAILED))
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_CHANNEL_BUSY;
else {
enum i2c_channel_operation_result operation_result;
do {
operation_result =
base->funcs->get_channel_status(base, NULL);
switch (operation_result) {
case I2C_CHANNEL_OPERATION_SUCCEEDED:
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_SUCCEEDED;
operation_succeeded = true;
break;
case I2C_CHANNEL_OPERATION_NO_RESPONSE:
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_NACK;
break;
case I2C_CHANNEL_OPERATION_TIMEOUT:
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_TIMEOUT;
break;
case I2C_CHANNEL_OPERATION_FAILED:
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_INCOMPLETE;
break;
default:
i2caux_request->status =
I2CAUX_TRANSACTION_STATUS_FAILED_OPERATION;
break;
}
} while (operation_result == I2C_CHANNEL_OPERATION_ENGINE_BUSY);
}
return operation_succeeded;
}
uint32_t dal_i2c_sw_engine_get_speed(
const struct i2c_engine *engine)
{
return FROM_I2C_ENGINE(engine)->speed;
}
void dal_i2c_sw_engine_set_speed(
struct i2c_engine *engine,
uint32_t speed)
{
struct i2c_sw_engine *sw_engine = FROM_I2C_ENGINE(engine);
ASSERT(speed);
sw_engine->speed = speed ? speed : I2CAUX_DEFAULT_I2C_SW_SPEED;
sw_engine->clock_delay = 1000 / sw_engine->speed;
if (sw_engine->clock_delay < 12)
sw_engine->clock_delay = 12;
}
bool dal_i2caux_i2c_sw_engine_acquire_engine(
struct i2c_engine *engine,
struct ddc *ddc)
{
enum gpio_result result;
result = dal_ddc_open(ddc, GPIO_MODE_FAST_OUTPUT,
GPIO_DDC_CONFIG_TYPE_MODE_I2C);
if (result != GPIO_RESULT_OK)
return false;
engine->base.ddc = ddc;
return true;
}
void dal_i2c_sw_engine_submit_channel_request(
struct i2c_engine *engine,
struct i2c_request_transaction_data *req)
{
struct i2c_sw_engine *sw_engine = FROM_I2C_ENGINE(engine);
struct ddc *ddc = engine->base.ddc;
uint16_t clock_delay_div_4 = sw_engine->clock_delay >> 2;
/* send sync (start / repeated start) */
bool result = start_sync(engine->base.ctx, ddc, clock_delay_div_4);
/* process payload */
if (result) {
switch (req->action) {
case I2CAUX_TRANSACTION_ACTION_I2C_WRITE:
case I2CAUX_TRANSACTION_ACTION_I2C_WRITE_MOT:
result = i2c_write(engine->base.ctx, ddc, clock_delay_div_4,
req->address, req->length, req->data);
break;
case I2CAUX_TRANSACTION_ACTION_I2C_READ:
case I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT:
result = i2c_read(engine->base.ctx, ddc, clock_delay_div_4,
req->address, req->length, req->data);
break;
default:
result = false;
break;
}
}
/* send stop if not 'mot' or operation failed */
if (!result ||
(req->action == I2CAUX_TRANSACTION_ACTION_I2C_WRITE) ||
(req->action == I2CAUX_TRANSACTION_ACTION_I2C_READ))
if (!stop_sync(engine->base.ctx, ddc, clock_delay_div_4))
result = false;
req->status = result ?
I2C_CHANNEL_OPERATION_SUCCEEDED :
I2C_CHANNEL_OPERATION_FAILED;
}
enum i2c_channel_operation_result dal_i2c_sw_engine_get_channel_status(
struct i2c_engine *engine,
uint8_t *returned_bytes)
{
/* No arbitration with VBIOS is performed since DCE 6.0 */
return I2C_CHANNEL_OPERATION_SUCCEEDED;
}
void dal_i2c_sw_engine_destruct(
struct i2c_sw_engine *engine)
{
dal_i2c_engine_destruct(&engine->base);
}
static void destroy(
struct i2c_engine **ptr)
{
dal_i2c_sw_engine_destruct(FROM_I2C_ENGINE(*ptr));
kfree(*ptr);
*ptr = NULL;
}
static const struct i2c_engine_funcs i2c_engine_funcs = {
.acquire_engine = dal_i2caux_i2c_sw_engine_acquire_engine,
.destroy = destroy,
.get_speed = dal_i2c_sw_engine_get_speed,
.set_speed = dal_i2c_sw_engine_set_speed,
.setup_engine = dal_i2c_engine_setup_i2c_engine,
.submit_channel_request = dal_i2c_sw_engine_submit_channel_request,
.process_channel_reply = dal_i2c_engine_process_channel_reply,
.get_channel_status = dal_i2c_sw_engine_get_channel_status,
};
static void release_engine(
struct engine *engine)
{
}
static const struct engine_funcs engine_funcs = {
.release_engine = release_engine,
.get_engine_type = dal_i2c_sw_engine_get_engine_type,
.acquire = dal_i2c_engine_acquire,
.submit_request = dal_i2c_sw_engine_submit_request,
};
void dal_i2c_sw_engine_construct(
struct i2c_sw_engine *engine,
const struct i2c_sw_engine_create_arg *arg)
{
dal_i2c_engine_construct(&engine->base, arg->ctx);
dal_i2c_sw_engine_set_speed(&engine->base, arg->default_speed);
engine->base.funcs = &i2c_engine_funcs;
engine->base.base.funcs = &engine_funcs;
}
struct i2c_engine *dal_i2c_sw_engine_create(
const struct i2c_sw_engine_create_arg *arg)
{
struct i2c_sw_engine *engine;
if (!arg) {
BREAK_TO_DEBUGGER();
return NULL;
}
engine = kzalloc(sizeof(struct i2c_sw_engine), GFP_KERNEL);
if (!engine) {
BREAK_TO_DEBUGGER();
return NULL;
}
dal_i2c_sw_engine_construct(engine, arg);
return &engine->base;
}