blob: 5570fb5dc2eb40079a86b4f32ce5779c80f29153 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
#include <linux/etherdevice.h>
#include <net/rtnetlink.h>
#include "hclgevf_cmd.h"
#include "hclgevf_main.h"
#include "hclge_mbx.h"
#include "hnae3.h"
#define HCLGEVF_NAME "hclgevf"
static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
static struct hnae3_ae_algo ae_algovf;
static const struct pci_device_id ae_algovf_pci_tbl[] = {
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
struct hnae3_handle *handle)
{
return container_of(handle, struct hclgevf_dev, nic);
}
static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hnae3_queue *queue;
struct hclgevf_desc desc;
struct hclgevf_tqp *tqp;
int status;
int i;
for (i = 0; i < hdev->num_tqps; i++) {
queue = handle->kinfo.tqp[i];
tqp = container_of(queue, struct hclgevf_tqp, q);
hclgevf_cmd_setup_basic_desc(&desc,
HCLGEVF_OPC_QUERY_RX_STATUS,
true);
desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Query tqp stat fail, status = %d,queue = %d\n",
status, i);
return status;
}
tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
le32_to_cpu(desc.data[1]);
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
true);
desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Query tqp stat fail, status = %d,queue = %d\n",
status, i);
return status;
}
tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
le32_to_cpu(desc.data[1]);
}
return 0;
}
static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hclgevf_tqp *tqp;
u64 *buff = data;
int i;
for (i = 0; i < hdev->num_tqps; i++) {
tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
*buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
}
for (i = 0; i < kinfo->num_tqps; i++) {
tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
*buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
}
return buff;
}
static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hdev->num_tqps * 2;
}
static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
u8 *buff = data;
int i = 0;
for (i = 0; i < hdev->num_tqps; i++) {
struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
struct hclgevf_tqp, q);
snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
tqp->index);
buff += ETH_GSTRING_LEN;
}
for (i = 0; i < hdev->num_tqps; i++) {
struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
struct hclgevf_tqp, q);
snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
tqp->index);
buff += ETH_GSTRING_LEN;
}
return buff;
}
static void hclgevf_update_stats(struct hnae3_handle *handle,
struct net_device_stats *net_stats)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int status;
status = hclgevf_tqps_update_stats(handle);
if (status)
dev_err(&hdev->pdev->dev,
"VF update of TQPS stats fail, status = %d.\n",
status);
}
static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
{
if (strset == ETH_SS_TEST)
return -EOPNOTSUPP;
else if (strset == ETH_SS_STATS)
return hclgevf_tqps_get_sset_count(handle, strset);
return 0;
}
static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
u8 *data)
{
u8 *p = (char *)data;
if (strset == ETH_SS_STATS)
p = hclgevf_tqps_get_strings(handle, p);
}
static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
{
hclgevf_tqps_get_stats(handle, data);
}
static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
{
u8 resp_msg;
int status;
status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
true, &resp_msg, sizeof(u8));
if (status) {
dev_err(&hdev->pdev->dev,
"VF request to get TC info from PF failed %d",
status);
return status;
}
hdev->hw_tc_map = resp_msg;
return 0;
}
static int hclge_get_queue_info(struct hclgevf_dev *hdev)
{
#define HCLGEVF_TQPS_RSS_INFO_LEN 8
u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
int status;
status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
true, resp_msg,
HCLGEVF_TQPS_RSS_INFO_LEN);
if (status) {
dev_err(&hdev->pdev->dev,
"VF request to get tqp info from PF failed %d",
status);
return status;
}
memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
return 0;
}
static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
{
struct hclgevf_tqp *tqp;
int i;
/* if this is on going reset then we need to re-allocate the TPQs
* since we cannot assume we would get same number of TPQs back from PF
*/
if (hclgevf_dev_ongoing_reset(hdev))
devm_kfree(&hdev->pdev->dev, hdev->htqp);
hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
sizeof(struct hclgevf_tqp), GFP_KERNEL);
if (!hdev->htqp)
return -ENOMEM;
tqp = hdev->htqp;
for (i = 0; i < hdev->num_tqps; i++) {
tqp->dev = &hdev->pdev->dev;
tqp->index = i;
tqp->q.ae_algo = &ae_algovf;
tqp->q.buf_size = hdev->rx_buf_len;
tqp->q.desc_num = hdev->num_desc;
tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
i * HCLGEVF_TQP_REG_SIZE;
tqp++;
}
return 0;
}
static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
{
struct hnae3_handle *nic = &hdev->nic;
struct hnae3_knic_private_info *kinfo;
u16 new_tqps = hdev->num_tqps;
int i;
kinfo = &nic->kinfo;
kinfo->num_tc = 0;
kinfo->num_desc = hdev->num_desc;
kinfo->rx_buf_len = hdev->rx_buf_len;
for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
if (hdev->hw_tc_map & BIT(i))
kinfo->num_tc++;
kinfo->rss_size
= min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
new_tqps = kinfo->rss_size * kinfo->num_tc;
kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
/* if this is on going reset then we need to re-allocate the hnae queues
* as well since number of TPQs from PF might have changed.
*/
if (hclgevf_dev_ongoing_reset(hdev))
devm_kfree(&hdev->pdev->dev, kinfo->tqp);
kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
sizeof(struct hnae3_queue *), GFP_KERNEL);
if (!kinfo->tqp)
return -ENOMEM;
for (i = 0; i < kinfo->num_tqps; i++) {
hdev->htqp[i].q.handle = &hdev->nic;
hdev->htqp[i].q.tqp_index = i;
kinfo->tqp[i] = &hdev->htqp[i].q;
}
return 0;
}
static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
{
int status;
u8 resp_msg;
status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
0, false, &resp_msg, sizeof(u8));
if (status)
dev_err(&hdev->pdev->dev,
"VF failed to fetch link status(%d) from PF", status);
}
void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
{
struct hnae3_handle *handle = &hdev->nic;
struct hnae3_client *client;
client = handle->client;
link_state =
test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
if (link_state != hdev->hw.mac.link) {
client->ops->link_status_change(handle, !!link_state);
hdev->hw.mac.link = link_state;
}
}
static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
{
struct hnae3_handle *nic = &hdev->nic;
int ret;
nic->ae_algo = &ae_algovf;
nic->pdev = hdev->pdev;
nic->numa_node_mask = hdev->numa_node_mask;
nic->flags |= HNAE3_SUPPORT_VF;
if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
hdev->ae_dev->dev_type);
return -EINVAL;
}
ret = hclgevf_knic_setup(hdev);
if (ret)
dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
ret);
return ret;
}
static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
{
if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
dev_warn(&hdev->pdev->dev,
"vector(vector_id %d) has been freed.\n", vector_id);
return;
}
hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
hdev->num_msi_left += 1;
hdev->num_msi_used -= 1;
}
static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
struct hnae3_vector_info *vector_info)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hnae3_vector_info *vector = vector_info;
int alloc = 0;
int i, j;
vector_num = min(hdev->num_msi_left, vector_num);
for (j = 0; j < vector_num; j++) {
for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
vector->vector = pci_irq_vector(hdev->pdev, i);
vector->io_addr = hdev->hw.io_base +
HCLGEVF_VECTOR_REG_BASE +
(i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
hdev->vector_status[i] = 0;
hdev->vector_irq[i] = vector->vector;
vector++;
alloc++;
break;
}
}
}
hdev->num_msi_left -= alloc;
hdev->num_msi_used += alloc;
return alloc;
}
static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
{
int i;
for (i = 0; i < hdev->num_msi; i++)
if (vector == hdev->vector_irq[i])
return i;
return -EINVAL;
}
static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
{
return HCLGEVF_RSS_KEY_SIZE;
}
static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
{
return HCLGEVF_RSS_IND_TBL_SIZE;
}
static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
{
const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
struct hclgevf_rss_indirection_table_cmd *req;
struct hclgevf_desc desc;
int status;
int i, j;
req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
false);
req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
req->rss_result[j] =
indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"VF failed(=%d) to set RSS indirection table\n",
status);
return status;
}
}
return 0;
}
static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
{
struct hclgevf_rss_tc_mode_cmd *req;
u16 tc_offset[HCLGEVF_MAX_TC_NUM];
u16 tc_valid[HCLGEVF_MAX_TC_NUM];
u16 tc_size[HCLGEVF_MAX_TC_NUM];
struct hclgevf_desc desc;
u16 roundup_size;
int status;
int i;
req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
roundup_size = roundup_pow_of_two(rss_size);
roundup_size = ilog2(roundup_size);
for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
tc_size[i] = roundup_size;
tc_offset[i] = rss_size * i;
}
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
(tc_valid[i] & 0x1));
hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
}
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"VF failed(=%d) to set rss tc mode\n", status);
return status;
}
static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
u8 *key)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hclgevf_rss_config_cmd *req;
int lkup_times = key ? 3 : 1;
struct hclgevf_desc desc;
int key_offset;
int key_size;
int status;
req = (struct hclgevf_rss_config_cmd *)desc.data;
lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
for (key_offset = 0; key_offset < lkup_times; key_offset++) {
hclgevf_cmd_setup_basic_desc(&desc,
HCLGEVF_OPC_RSS_GENERIC_CONFIG,
true);
req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"failed to get hardware RSS cfg, status = %d\n",
status);
return status;
}
if (key_offset == 2)
key_size =
HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
else
key_size = HCLGEVF_RSS_HASH_KEY_NUM;
if (key)
memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
req->hash_key,
key_size);
}
if (hash) {
if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
*hash = ETH_RSS_HASH_TOP;
else
*hash = ETH_RSS_HASH_UNKNOWN;
}
return 0;
}
static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
u8 *hfunc)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
int i;
if (indir)
for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
indir[i] = rss_cfg->rss_indirection_tbl[i];
return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
}
static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
const u8 *key, const u8 hfunc)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
int i;
/* update the shadow RSS table with user specified qids */
for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
rss_cfg->rss_indirection_tbl[i] = indir[i];
/* update the hardware */
return hclgevf_set_rss_indir_table(hdev);
}
static int hclgevf_get_tc_size(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
return rss_cfg->rss_size;
}
static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
int vector_id,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hnae3_ring_chain_node *node;
struct hclge_mbx_vf_to_pf_cmd *req;
struct hclgevf_desc desc;
int i = 0;
int status;
u8 type;
req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
for (node = ring_chain; node; node = node->next) {
int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
if (i == 0) {
hclgevf_cmd_setup_basic_desc(&desc,
HCLGEVF_OPC_MBX_VF_TO_PF,
false);
type = en ?
HCLGE_MBX_MAP_RING_TO_VECTOR :
HCLGE_MBX_UNMAP_RING_TO_VECTOR;
req->msg[0] = type;
req->msg[1] = vector_id;
}
req->msg[idx_offset] =
hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
req->msg[idx_offset + 1] = node->tqp_index;
req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S);
i++;
if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
!node->next) {
req->msg[2] = i;
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status) {
dev_err(&hdev->pdev->dev,
"Map TQP fail, status is %d.\n",
status);
return status;
}
i = 0;
hclgevf_cmd_setup_basic_desc(&desc,
HCLGEVF_OPC_MBX_VF_TO_PF,
false);
req->msg[0] = type;
req->msg[1] = vector_id;
}
}
return 0;
}
static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int vector_id;
vector_id = hclgevf_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&handle->pdev->dev,
"Get vector index fail. ret =%d\n", vector_id);
return vector_id;
}
return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
}
static int hclgevf_unmap_ring_from_vector(
struct hnae3_handle *handle,
int vector,
struct hnae3_ring_chain_node *ring_chain)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int ret, vector_id;
vector_id = hclgevf_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&handle->pdev->dev,
"Get vector index fail. ret =%d\n", vector_id);
return vector_id;
}
ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
if (ret)
dev_err(&handle->pdev->dev,
"Unmap ring from vector fail. vector=%d, ret =%d\n",
vector_id,
ret);
return ret;
}
static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int vector_id;
vector_id = hclgevf_get_vector_index(hdev, vector);
if (vector_id < 0) {
dev_err(&handle->pdev->dev,
"hclgevf_put_vector get vector index fail. ret =%d\n",
vector_id);
return vector_id;
}
hclgevf_free_vector(hdev, vector_id);
return 0;
}
static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
bool en_uc_pmc, bool en_mc_pmc)
{
struct hclge_mbx_vf_to_pf_cmd *req;
struct hclgevf_desc desc;
int status;
req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
req->msg[1] = en_uc_pmc ? 1 : 0;
req->msg[2] = en_mc_pmc ? 1 : 0;
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"Set promisc mode fail, status is %d.\n", status);
return status;
}
static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
bool en_uc_pmc, bool en_mc_pmc)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
}
static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
int stream_id, bool enable)
{
struct hclgevf_cfg_com_tqp_queue_cmd *req;
struct hclgevf_desc desc;
int status;
req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
false);
req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
req->stream_id = cpu_to_le16(stream_id);
req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (status)
dev_err(&hdev->pdev->dev,
"TQP enable fail, status =%d.\n", status);
return status;
}
static int hclgevf_get_queue_id(struct hnae3_queue *queue)
{
struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
return tqp->index;
}
static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct hnae3_queue *queue;
struct hclgevf_tqp *tqp;
int i;
for (i = 0; i < hdev->num_tqps; i++) {
queue = handle->kinfo.tqp[i];
tqp = container_of(queue, struct hclgevf_tqp, q);
memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
}
}
static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
{
u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
int ret;
ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
NULL, 0, true, &resp_msg, sizeof(u8));
if (ret) {
dev_err(&hdev->pdev->dev,
"Read mta type fail, ret=%d.\n", ret);
return ret;
}
if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
dev_err(&hdev->pdev->dev,
"Read mta type invalid, resp=%d.\n", resp_msg);
return -EINVAL;
}
hdev->mta_mac_sel_type = resp_msg;
return 0;
}
static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
const u8 *addr)
{
u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
u16 high_val = addr[1] | (addr[0] << 8);
return (high_val >> rsh) & 0xfff;
}
static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
unsigned long *status)
{
#define HCLGEVF_MTA_STATUS_MSG_SIZE 13
#define HCLGEVF_MTA_STATUS_MSG_BITS \
(HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
#define HCLGEVF_MTA_STATUS_MSG_END_BITS \
(HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
u16 tbl_cnt;
u16 tbl_idx;
u8 msg_cnt;
u8 msg_idx;
int ret;
msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
HCLGEVF_MTA_STATUS_MSG_BITS);
tbl_idx = 0;
msg_idx = 0;
while (msg_cnt--) {
u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
u8 *p = &msg[1];
u8 msg_ofs;
u8 msg_bit;
memset(msg, 0, sizeof(msg));
/* set index field */
msg[0] = 0x7F & msg_idx;
/* set end flag field */
if (msg_cnt == 0) {
msg[0] |= 0x80;
tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
} else {
tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
}
/* set status field */
msg_ofs = 0;
msg_bit = 0;
while (tbl_cnt--) {
if (test_bit(tbl_idx, status))
p[msg_ofs] |= BIT(msg_bit);
tbl_idx++;
msg_bit++;
if (msg_bit == BITS_PER_BYTE) {
msg_bit = 0;
msg_ofs++;
}
}
ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
msg, sizeof(msg), false, NULL, 0);
if (ret)
break;
msg_idx++;
}
return ret;
}
static int hclgevf_update_mta_status(struct hnae3_handle *handle)
{
unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
struct net_device *netdev = hdev->nic.kinfo.netdev;
struct netdev_hw_addr *ha;
u16 tbl_idx;
/* clear status */
memset(mta_status, 0, sizeof(mta_status));
/* update status from mc addr list */
netdev_for_each_mc_addr(ha, netdev) {
tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
set_bit(tbl_idx, mta_status);
}
return hclgevf_do_update_mta_status(hdev, mta_status);
}
static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
ether_addr_copy(p, hdev->hw.mac.mac_addr);
}
static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
bool is_first)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
u8 *new_mac_addr = (u8 *)p;
u8 msg_data[ETH_ALEN * 2];
u16 subcode;
int status;
ether_addr_copy(msg_data, new_mac_addr);
ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
HCLGE_MBX_MAC_VLAN_UC_MODIFY;
status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
subcode, msg_data, ETH_ALEN * 2,
true, NULL, 0);
if (!status)
ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
return status;
}
static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
HCLGE_MBX_MAC_VLAN_UC_ADD,
addr, ETH_ALEN, false, NULL, 0);
}
static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
HCLGE_MBX_MAC_VLAN_UC_REMOVE,
addr, ETH_ALEN, false, NULL, 0);
}
static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
HCLGE_MBX_MAC_VLAN_MC_ADD,
addr, ETH_ALEN, false, NULL, 0);
}
static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
const unsigned char *addr)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
HCLGE_MBX_MAC_VLAN_MC_REMOVE,
addr, ETH_ALEN, false, NULL, 0);
}
static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
__be16 proto, u16 vlan_id,
bool is_kill)
{
#define HCLGEVF_VLAN_MBX_MSG_LEN 5
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
if (vlan_id > 4095)
return -EINVAL;
if (proto != htons(ETH_P_8021Q))
return -EPROTONOSUPPORT;
msg_data[0] = is_kill;
memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
memcpy(&msg_data[3], &proto, sizeof(proto));
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
HCLGE_MBX_VLAN_FILTER, msg_data,
HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
}
static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
u8 msg_data;
msg_data = enable ? 1 : 0;
return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1, false, NULL, 0);
}
static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
u8 msg_data[2];
int ret;
memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
/* disable vf queue before send queue reset msg to PF */
ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
if (ret)
return;
hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
2, true, NULL, 0);
}
static int hclgevf_notify_client(struct hclgevf_dev *hdev,
enum hnae3_reset_notify_type type)
{
struct hnae3_client *client = hdev->nic_client;
struct hnae3_handle *handle = &hdev->nic;
if (!client->ops->reset_notify)
return -EOPNOTSUPP;
return client->ops->reset_notify(handle, type);
}
static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
{
#define HCLGEVF_RESET_WAIT_MS 500
#define HCLGEVF_RESET_WAIT_CNT 20
u32 val, cnt = 0;
/* wait to check the hardware reset completion status */
val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
(cnt < HCLGEVF_RESET_WAIT_CNT)) {
msleep(HCLGEVF_RESET_WAIT_MS);
val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
cnt++;
}
/* hardware completion status should be available by this time */
if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
dev_warn(&hdev->pdev->dev,
"could'nt get reset done status from h/w, timeout!\n");
return -EBUSY;
}
/* we will wait a bit more to let reset of the stack to complete. This
* might happen in case reset assertion was made by PF. Yes, this also
* means we might end up waiting bit more even for VF reset.
*/
msleep(5000);
return 0;
}
static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
{
int ret;
/* uninitialize the nic client */
hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
/* re-initialize the hclge device */
ret = hclgevf_init_hdev(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"hclge device re-init failed, VF is disabled!\n");
return ret;
}
/* bring up the nic client again */
hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
return 0;
}
static int hclgevf_reset(struct hclgevf_dev *hdev)
{
int ret;
rtnl_lock();
/* bring down the nic to stop any ongoing TX/RX */
hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
rtnl_unlock();
/* check if VF could successfully fetch the hardware reset completion
* status from the hardware
*/
ret = hclgevf_reset_wait(hdev);
if (ret) {
/* can't do much in this situation, will disable VF */
dev_err(&hdev->pdev->dev,
"VF failed(=%d) to fetch H/W reset completion status\n",
ret);
dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
rtnl_lock();
hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
rtnl_unlock();
return ret;
}
rtnl_lock();
/* now, re-initialize the nic client and ae device*/
ret = hclgevf_reset_stack(hdev);
if (ret)
dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
/* bring up the nic to enable TX/RX again */
hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
rtnl_unlock();
return ret;
}
static int hclgevf_do_reset(struct hclgevf_dev *hdev)
{
int status;
u8 respmsg;
status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
0, false, &respmsg, sizeof(u8));
if (status)
dev_err(&hdev->pdev->dev,
"VF reset request to PF failed(=%d)\n", status);
return status;
}
static void hclgevf_reset_event(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
handle->reset_level = HNAE3_VF_RESET;
/* reset of this VF requested */
set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
hclgevf_reset_task_schedule(hdev);
handle->last_reset_time = jiffies;
}
static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hdev->fw_version;
}
static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
{
struct hclgevf_misc_vector *vector = &hdev->misc_vector;
vector->vector_irq = pci_irq_vector(hdev->pdev,
HCLGEVF_MISC_VECTOR_NUM);
vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
/* vector status always valid for Vector 0 */
hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
hdev->num_msi_left -= 1;
hdev->num_msi_used += 1;
}
void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
{
if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
!test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
schedule_work(&hdev->rst_service_task);
}
}
void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
{
if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
!test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
schedule_work(&hdev->mbx_service_task);
}
}
static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
{
if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) &&
!test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
schedule_work(&hdev->service_task);
}
static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
{
/* if we have any pending mailbox event then schedule the mbx task */
if (hdev->mbx_event_pending)
hclgevf_mbx_task_schedule(hdev);
if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
hclgevf_reset_task_schedule(hdev);
}
static void hclgevf_service_timer(struct timer_list *t)
{
struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
hclgevf_task_schedule(hdev);
}
static void hclgevf_reset_service_task(struct work_struct *work)
{
struct hclgevf_dev *hdev =
container_of(work, struct hclgevf_dev, rst_service_task);
int ret;
if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
return;
clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
&hdev->reset_state)) {
/* PF has initmated that it is about to reset the hardware.
* We now have to poll & check if harware has actually completed
* the reset sequence. On hardware reset completion, VF needs to
* reset the client and ae device.
*/
hdev->reset_attempts = 0;
ret = hclgevf_reset(hdev);
if (ret)
dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
} else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
&hdev->reset_state)) {
/* we could be here when either of below happens:
* 1. reset was initiated due to watchdog timeout due to
* a. IMP was earlier reset and our TX got choked down and
* which resulted in watchdog reacting and inducing VF
* reset. This also means our cmdq would be unreliable.
* b. problem in TX due to other lower layer(example link
* layer not functioning properly etc.)
* 2. VF reset might have been initiated due to some config
* change.
*
* NOTE: Theres no clear way to detect above cases than to react
* to the response of PF for this reset request. PF will ack the
* 1b and 2. cases but we will not get any intimation about 1a
* from PF as cmdq would be in unreliable state i.e. mailbox
* communication between PF and VF would be broken.
*/
/* if we are never geting into pending state it means either:
* 1. PF is not receiving our request which could be due to IMP
* reset
* 2. PF is screwed
* We cannot do much for 2. but to check first we can try reset
* our PCIe + stack and see if it alleviates the problem.
*/
if (hdev->reset_attempts > 3) {
/* prepare for full reset of stack + pcie interface */
hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
/* "defer" schedule the reset task again */
set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
} else {
hdev->reset_attempts++;
/* request PF for resetting this VF via mailbox */
ret = hclgevf_do_reset(hdev);
if (ret)
dev_warn(&hdev->pdev->dev,
"VF rst fail, stack will call\n");
}
}
clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
}
static void hclgevf_mailbox_service_task(struct work_struct *work)
{
struct hclgevf_dev *hdev;
hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
return;
clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
hclgevf_mbx_async_handler(hdev);
clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
}
static void hclgevf_service_task(struct work_struct *work)
{
struct hclgevf_dev *hdev;
hdev = container_of(work, struct hclgevf_dev, service_task);
/* request the link status from the PF. PF would be able to tell VF
* about such updates in future so we might remove this later
*/
hclgevf_request_link_info(hdev);
hclgevf_deferred_task_schedule(hdev);
clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
}
static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
{
hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
}
static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
{
u32 cmdq_src_reg;
/* fetch the events from their corresponding regs */
cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
HCLGEVF_VECTOR0_CMDQ_SRC_REG);
/* check for vector0 mailbox(=CMDQ RX) event source */
if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
*clearval = cmdq_src_reg;
return true;
}
dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
return false;
}
static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
{
writel(en ? 1 : 0, vector->addr);
}
static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
{
struct hclgevf_dev *hdev = data;
u32 clearval;
hclgevf_enable_vector(&hdev->misc_vector, false);
if (!hclgevf_check_event_cause(hdev, &clearval))
goto skip_sched;
hclgevf_mbx_handler(hdev);
hclgevf_clear_event_cause(hdev, clearval);
skip_sched:
hclgevf_enable_vector(&hdev->misc_vector, true);
return IRQ_HANDLED;
}
static int hclgevf_configure(struct hclgevf_dev *hdev)
{
int ret;
/* get queue configuration from PF */
ret = hclge_get_queue_info(hdev);
if (ret)
return ret;
/* get tc configuration from PF */
return hclgevf_get_tc_info(hdev);
}
static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
{
struct pci_dev *pdev = ae_dev->pdev;
struct hclgevf_dev *hdev = ae_dev->priv;
hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
if (!hdev)
return -ENOMEM;
hdev->pdev = pdev;
hdev->ae_dev = ae_dev;
ae_dev->priv = hdev;
return 0;
}
static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
{
struct hnae3_handle *roce = &hdev->roce;
struct hnae3_handle *nic = &hdev->nic;
roce->rinfo.num_vectors = hdev->num_roce_msix;
if (hdev->num_msi_left < roce->rinfo.num_vectors ||
hdev->num_msi_left == 0)
return -EINVAL;
roce->rinfo.base_vector = hdev->roce_base_vector;
roce->rinfo.netdev = nic->kinfo.netdev;
roce->rinfo.roce_io_base = hdev->hw.io_base;
roce->pdev = nic->pdev;
roce->ae_algo = nic->ae_algo;
roce->numa_node_mask = nic->numa_node_mask;
return 0;
}
static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
{
struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
int i, ret;
rss_cfg->rss_size = hdev->rss_size_max;
/* Initialize RSS indirect table for each vport */
for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
ret = hclgevf_set_rss_indir_table(hdev);
if (ret)
return ret;
return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
}
static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
{
/* other vlan config(like, VLAN TX/RX offload) would also be added
* here later
*/
return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
false);
}
static int hclgevf_ae_start(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int i, queue_id;
for (i = 0; i < handle->kinfo.num_tqps; i++) {
/* ring enable */
queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
if (queue_id < 0) {
dev_warn(&hdev->pdev->dev,
"Get invalid queue id, ignore it\n");
continue;
}
hclgevf_tqp_enable(hdev, queue_id, 0, true);
}
/* reset tqp stats */
hclgevf_reset_tqp_stats(handle);
hclgevf_request_link_info(hdev);
clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
mod_timer(&hdev->service_timer, jiffies + HZ);
return 0;
}
static void hclgevf_ae_stop(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
int i, queue_id;
set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
for (i = 0; i < hdev->num_tqps; i++) {
/* Ring disable */
queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
if (queue_id < 0) {
dev_warn(&hdev->pdev->dev,
"Get invalid queue id, ignore it\n");
continue;
}
hclgevf_tqp_enable(hdev, queue_id, 0, false);
}
/* reset tqp stats */
hclgevf_reset_tqp_stats(handle);
del_timer_sync(&hdev->service_timer);
cancel_work_sync(&hdev->service_task);
clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
hclgevf_update_link_status(hdev, 0);
}
static void hclgevf_state_init(struct hclgevf_dev *hdev)
{
/* if this is on going reset then skip this initialization */
if (hclgevf_dev_ongoing_reset(hdev))
return;
/* setup tasks for the MBX */
INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
/* setup tasks for service timer */
timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
INIT_WORK(&hdev->service_task, hclgevf_service_task);
clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
mutex_init(&hdev->mbx_resp.mbx_mutex);
/* bring the device down */
set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
}
static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
{
set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
if (hdev->service_timer.function)
del_timer_sync(&hdev->service_timer);
if (hdev->service_task.func)
cancel_work_sync(&hdev->service_task);
if (hdev->mbx_service_task.func)
cancel_work_sync(&hdev->mbx_service_task);
if (hdev->rst_service_task.func)
cancel_work_sync(&hdev->rst_service_task);
mutex_destroy(&hdev->mbx_resp.mbx_mutex);
}
static int hclgevf_init_msi(struct hclgevf_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
int vectors;
int i;
/* if this is on going reset then skip this initialization */
if (hclgevf_dev_ongoing_reset(hdev))
return 0;
if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
vectors = pci_alloc_irq_vectors(pdev,
hdev->roce_base_msix_offset + 1,
hdev->num_msi,
PCI_IRQ_MSIX);
else
vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (vectors < 0) {
dev_err(&pdev->dev,
"failed(%d) to allocate MSI/MSI-X vectors\n",
vectors);
return vectors;
}
if (vectors < hdev->num_msi)
dev_warn(&hdev->pdev->dev,
"requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
hdev->num_msi, vectors);
hdev->num_msi = vectors;
hdev->num_msi_left = vectors;
hdev->base_msi_vector = pdev->irq;
hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
sizeof(u16), GFP_KERNEL);
if (!hdev->vector_status) {
pci_free_irq_vectors(pdev);
return -ENOMEM;
}
for (i = 0; i < hdev->num_msi; i++)
hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
sizeof(int), GFP_KERNEL);
if (!hdev->vector_irq) {
pci_free_irq_vectors(pdev);
return -ENOMEM;
}
return 0;
}
static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
pci_free_irq_vectors(pdev);
}
static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
{
int ret = 0;
/* if this is on going reset then skip this initialization */
if (hclgevf_dev_ongoing_reset(hdev))
return 0;
hclgevf_get_misc_vector(hdev);
ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
0, "hclgevf_cmd", hdev);
if (ret) {
dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
hdev->misc_vector.vector_irq);
return ret;
}
hclgevf_clear_event_cause(hdev, 0);
/* enable misc. vector(vector 0) */
hclgevf_enable_vector(&hdev->misc_vector, true);
return ret;
}
static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
{
/* disable misc vector(vector 0) */
hclgevf_enable_vector(&hdev->misc_vector, false);
synchronize_irq(hdev->misc_vector.vector_irq);
free_irq(hdev->misc_vector.vector_irq, hdev);
hclgevf_free_vector(hdev, 0);
}
static int hclgevf_init_client_instance(struct hnae3_client *client,
struct hnae3_ae_dev *ae_dev)
{
struct hclgevf_dev *hdev = ae_dev->priv;
int ret;
switch (client->type) {
case HNAE3_CLIENT_KNIC:
hdev->nic_client = client;
hdev->nic.client = client;
ret = client->ops->init_instance(&hdev->nic);
if (ret)
return ret;
if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
struct hnae3_client *rc = hdev->roce_client;
ret = hclgevf_init_roce_base_info(hdev);
if (ret)
return ret;
ret = rc->ops->init_instance(&hdev->roce);
if (ret)
return ret;
}
break;
case HNAE3_CLIENT_UNIC:
hdev->nic_client = client;
hdev->nic.client = client;
ret = client->ops->init_instance(&hdev->nic);
if (ret)
return ret;
break;
case HNAE3_CLIENT_ROCE:
if (hnae3_dev_roce_supported(hdev)) {
hdev->roce_client = client;
hdev->roce.client = client;
}
if (hdev->roce_client && hdev->nic_client) {
ret = hclgevf_init_roce_base_info(hdev);
if (ret)
return ret;
ret = client->ops->init_instance(&hdev->roce);
if (ret)
return ret;
}
}
return 0;
}
static void hclgevf_uninit_client_instance(struct hnae3_client *client,
struct hnae3_ae_dev *ae_dev)
{
struct hclgevf_dev *hdev = ae_dev->priv;
/* un-init roce, if it exists */
if (hdev->roce_client)
hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
/* un-init nic/unic, if this was not called by roce client */
if ((client->ops->uninit_instance) &&
(client->type != HNAE3_CLIENT_ROCE))
client->ops->uninit_instance(&hdev->nic, 0);
}
static int hclgevf_pci_init(struct hclgevf_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
struct hclgevf_hw *hw;
int ret;
/* check if we need to skip initialization of pci. This will happen if
* device is undergoing VF reset. Otherwise, we would need to
* re-initialize pci interface again i.e. when device is not going
* through *any* reset or actually undergoing full reset.
*/
if (hclgevf_dev_ongoing_reset(hdev))
return 0;
ret = pci_enable_device(pdev);
if (ret) {
dev_err(&pdev->dev, "failed to enable PCI device\n");
return ret;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
goto err_disable_device;
}
ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
if (ret) {
dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
goto err_disable_device;
}
pci_set_master(pdev);
hw = &hdev->hw;
hw->hdev = hdev;
hw->io_base = pci_iomap(pdev, 2, 0);
if (!hw->io_base) {
dev_err(&pdev->dev, "can't map configuration register space\n");
ret = -ENOMEM;
goto err_clr_master;
}
return 0;
err_clr_master:
pci_clear_master(pdev);
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return ret;
}
static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
pci_iounmap(pdev, hdev->hw.io_base);
pci_clear_master(pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
{
struct hclgevf_query_res_cmd *req;
struct hclgevf_desc desc;
int ret;
hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
if (ret) {
dev_err(&hdev->pdev->dev,
"query vf resource failed, ret = %d.\n", ret);
return ret;
}
req = (struct hclgevf_query_res_cmd *)desc.data;
if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
hdev->roce_base_msix_offset =
hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
HCLGEVF_MSIX_OFT_ROCEE_M,
HCLGEVF_MSIX_OFT_ROCEE_S);
hdev->num_roce_msix =
hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
/* VF should have NIC vectors and Roce vectors, NIC vectors
* are queued before Roce vectors. The offset is fixed to 64.
*/
hdev->num_msi = hdev->num_roce_msix +
hdev->roce_base_msix_offset;
} else {
hdev->num_msi =
hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
}
return 0;
}
static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
{
struct pci_dev *pdev = hdev->pdev;
int ret;
/* check if device is on-going full reset(i.e. pcie as well) */
if (hclgevf_dev_ongoing_full_reset(hdev)) {
dev_warn(&pdev->dev, "device is going full reset\n");
hclgevf_uninit_hdev(hdev);
}
ret = hclgevf_pci_init(hdev);
if (ret) {
dev_err(&pdev->dev, "PCI initialization failed\n");
return ret;
}
ret = hclgevf_cmd_init(hdev);
if (ret)
goto err_cmd_init;
/* Get vf resource */
ret = hclgevf_query_vf_resource(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"Query vf status error, ret = %d.\n", ret);
goto err_query_vf;
}
ret = hclgevf_init_msi(hdev);
if (ret) {
dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
goto err_query_vf;
}
hclgevf_state_init(hdev);
ret = hclgevf_misc_irq_init(hdev);
if (ret) {
dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
ret);
goto err_misc_irq_init;
}
ret = hclgevf_configure(hdev);
if (ret) {
dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
goto err_config;
}
ret = hclgevf_alloc_tqps(hdev);
if (ret) {
dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
goto err_config;
}
ret = hclgevf_set_handle_info(hdev);
if (ret) {
dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
goto err_config;
}
/* Initialize mta type for this VF */
ret = hclgevf_cfg_func_mta_type(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"failed(%d) to initialize MTA type\n", ret);
goto err_config;
}
/* Initialize RSS for this VF */
ret = hclgevf_rss_init_hw(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"failed(%d) to initialize RSS\n", ret);
goto err_config;
}
ret = hclgevf_init_vlan_config(hdev);
if (ret) {
dev_err(&hdev->pdev->dev,
"failed(%d) to initialize VLAN config\n", ret);
goto err_config;
}
pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
return 0;
err_config:
hclgevf_misc_irq_uninit(hdev);
err_misc_irq_init:
hclgevf_state_uninit(hdev);
hclgevf_uninit_msi(hdev);
err_query_vf:
hclgevf_cmd_uninit(hdev);
err_cmd_init:
hclgevf_pci_uninit(hdev);
return ret;
}
static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
{
hclgevf_state_uninit(hdev);
hclgevf_misc_irq_uninit(hdev);
hclgevf_cmd_uninit(hdev);
hclgevf_uninit_msi(hdev);
hclgevf_pci_uninit(hdev);
}
static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
{
struct pci_dev *pdev = ae_dev->pdev;
int ret;
ret = hclgevf_alloc_hdev(ae_dev);
if (ret) {
dev_err(&pdev->dev, "hclge device allocation failed\n");
return ret;
}
ret = hclgevf_init_hdev(ae_dev->priv);
if (ret)
dev_err(&pdev->dev, "hclge device initialization failed\n");
return ret;
}
static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
{
struct hclgevf_dev *hdev = ae_dev->priv;
hclgevf_uninit_hdev(hdev);
ae_dev->priv = NULL;
}
static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
{
struct hnae3_handle *nic = &hdev->nic;
struct hnae3_knic_private_info *kinfo = &nic->kinfo;
return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
}
/**
* hclgevf_get_channels - Get the current channels enabled and max supported.
* @handle: hardware information for network interface
* @ch: ethtool channels structure
*
* We don't support separate tx and rx queues as channels. The other count
* represents how many queues are being used for control. max_combined counts
* how many queue pairs we can support. They may not be mapped 1 to 1 with
* q_vectors since we support a lot more queue pairs than q_vectors.
**/
static void hclgevf_get_channels(struct hnae3_handle *handle,
struct ethtool_channels *ch)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
ch->max_combined = hclgevf_get_max_channels(hdev);
ch->other_count = 0;
ch->max_other = 0;
ch->combined_count = hdev->num_tqps;
}
static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
u16 *free_tqps, u16 *max_rss_size)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
*free_tqps = 0;
*max_rss_size = hdev->rss_size_max;
}
static int hclgevf_get_status(struct hnae3_handle *handle)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
return hdev->hw.mac.link;
}
static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
u8 *auto_neg, u32 *speed,
u8 *duplex)
{
struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
if (speed)
*speed = hdev->hw.mac.speed;
if (duplex)
*duplex = hdev->hw.mac.duplex;
if (auto_neg)
*auto_neg = AUTONEG_DISABLE;
}
void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
u8 duplex)
{
hdev->hw.mac.speed = speed;
hdev->hw.mac.duplex = duplex;
}
static const struct hnae3_ae_ops hclgevf_ops = {
.init_ae_dev = hclgevf_init_ae_dev,
.uninit_ae_dev = hclgevf_uninit_ae_dev,
.init_client_instance = hclgevf_init_client_instance,
.uninit_client_instance = hclgevf_uninit_client_instance,
.start = hclgevf_ae_start,
.stop = hclgevf_ae_stop,
.map_ring_to_vector = hclgevf_map_ring_to_vector,
.unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
.get_vector = hclgevf_get_vector,
.put_vector = hclgevf_put_vector,
.reset_queue = hclgevf_reset_tqp,
.set_promisc_mode = hclgevf_set_promisc_mode,
.get_mac_addr = hclgevf_get_mac_addr,
.set_mac_addr = hclgevf_set_mac_addr,
.add_uc_addr = hclgevf_add_uc_addr,
.rm_uc_addr = hclgevf_rm_uc_addr,
.add_mc_addr = hclgevf_add_mc_addr,
.rm_mc_addr = hclgevf_rm_mc_addr,
.update_mta_status = hclgevf_update_mta_status,
.get_stats = hclgevf_get_stats,
.update_stats = hclgevf_update_stats,
.get_strings = hclgevf_get_strings,
.get_sset_count = hclgevf_get_sset_count,
.get_rss_key_size = hclgevf_get_rss_key_size,
.get_rss_indir_size = hclgevf_get_rss_indir_size,
.get_rss = hclgevf_get_rss,
.set_rss = hclgevf_set_rss,
.get_tc_size = hclgevf_get_tc_size,
.get_fw_version = hclgevf_get_fw_version,
.set_vlan_filter = hclgevf_set_vlan_filter,
.enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
.reset_event = hclgevf_reset_event,
.get_channels = hclgevf_get_channels,
.get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
.get_status = hclgevf_get_status,
.get_ksettings_an_result = hclgevf_get_ksettings_an_result,
};
static struct hnae3_ae_algo ae_algovf = {
.ops = &hclgevf_ops,
.pdev_id_table = ae_algovf_pci_tbl,
};
static int hclgevf_init(void)
{
pr_info("%s is initializing\n", HCLGEVF_NAME);
hnae3_register_ae_algo(&ae_algovf);
return 0;
}
static void hclgevf_exit(void)
{
hnae3_unregister_ae_algo(&ae_algovf);
}
module_init(hclgevf_init);
module_exit(hclgevf_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_DESCRIPTION("HCLGEVF Driver");
MODULE_VERSION(HCLGEVF_MOD_VERSION);