blob: f18e787fa9adcfa0c21f98a782c4b82d858ce211 [file] [log] [blame]
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
/* Copyright (C) 2015-2018 Netronome Systems, Inc. */
/*
* nfp_nsp.c
* Author: Jakub Kicinski <jakub.kicinski@netronome.com>
* Jason McMullan <jason.mcmullan@netronome.com>
*/
#include <asm/unaligned.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/overflow.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#define NFP_SUBSYS "nfp_nsp"
#include "nfp.h"
#include "nfp_cpp.h"
#include "nfp_nsp.h"
#define NFP_NSP_TIMEOUT_DEFAULT 30
#define NFP_NSP_TIMEOUT_BOOT 30
/* Offsets relative to the CSR base */
#define NSP_STATUS 0x00
#define NSP_STATUS_MAGIC GENMASK_ULL(63, 48)
#define NSP_STATUS_MAJOR GENMASK_ULL(47, 44)
#define NSP_STATUS_MINOR GENMASK_ULL(43, 32)
#define NSP_STATUS_CODE GENMASK_ULL(31, 16)
#define NSP_STATUS_RESULT GENMASK_ULL(15, 8)
#define NSP_STATUS_BUSY BIT_ULL(0)
#define NSP_COMMAND 0x08
#define NSP_COMMAND_OPTION GENMASK_ULL(63, 32)
#define NSP_COMMAND_CODE GENMASK_ULL(31, 16)
#define NSP_COMMAND_DMA_BUF BIT_ULL(1)
#define NSP_COMMAND_START BIT_ULL(0)
/* CPP address to retrieve the data from */
#define NSP_BUFFER 0x10
#define NSP_BUFFER_CPP GENMASK_ULL(63, 40)
#define NSP_BUFFER_ADDRESS GENMASK_ULL(39, 0)
#define NSP_DFLT_BUFFER 0x18
#define NSP_DFLT_BUFFER_CPP GENMASK_ULL(63, 40)
#define NSP_DFLT_BUFFER_ADDRESS GENMASK_ULL(39, 0)
#define NSP_DFLT_BUFFER_CONFIG 0x20
#define NSP_DFLT_BUFFER_DMA_CHUNK_ORDER GENMASK_ULL(63, 58)
#define NSP_DFLT_BUFFER_SIZE_4KB GENMASK_ULL(15, 8)
#define NSP_DFLT_BUFFER_SIZE_MB GENMASK_ULL(7, 0)
#define NFP_CAP_CMD_DMA_SG 0x28
#define NSP_MAGIC 0xab10
#define NSP_MAJOR 0
#define NSP_MINOR 8
#define NSP_CODE_MAJOR GENMASK(15, 12)
#define NSP_CODE_MINOR GENMASK(11, 0)
#define NFP_FW_LOAD_RET_MAJOR GENMASK(15, 8)
#define NFP_FW_LOAD_RET_MINOR GENMASK(23, 16)
#define NFP_HWINFO_LOOKUP_SIZE GENMASK(11, 0)
#define NFP_VERSIONS_SIZE GENMASK(11, 0)
#define NFP_VERSIONS_CNT_OFF 0
#define NFP_VERSIONS_BSP_OFF 2
#define NFP_VERSIONS_CPLD_OFF 6
#define NFP_VERSIONS_APP_OFF 10
#define NFP_VERSIONS_BUNDLE_OFF 14
#define NFP_VERSIONS_UNDI_OFF 18
#define NFP_VERSIONS_NCSI_OFF 22
#define NFP_VERSIONS_CFGR_OFF 26
#define NSP_SFF_EEPROM_BLOCK_LEN 8
enum nfp_nsp_cmd {
SPCODE_NOOP = 0, /* No operation */
SPCODE_SOFT_RESET = 1, /* Soft reset the NFP */
SPCODE_FW_DEFAULT = 2, /* Load default (UNDI) FW */
SPCODE_PHY_INIT = 3, /* Initialize the PHY */
SPCODE_MAC_INIT = 4, /* Initialize the MAC */
SPCODE_PHY_RXADAPT = 5, /* Re-run PHY RX Adaptation */
SPCODE_FW_LOAD = 6, /* Load fw from buffer, len in option */
SPCODE_ETH_RESCAN = 7, /* Rescan ETHs, write ETH_TABLE to buf */
SPCODE_ETH_CONTROL = 8, /* Update media config from buffer */
SPCODE_NSP_WRITE_FLASH = 11, /* Load and flash image from buffer */
SPCODE_NSP_SENSORS = 12, /* Read NSP sensor(s) */
SPCODE_NSP_IDENTIFY = 13, /* Read NSP version */
SPCODE_FW_STORED = 16, /* If no FW loaded, load flash app FW */
SPCODE_HWINFO_LOOKUP = 17, /* Lookup HWinfo with overwrites etc. */
SPCODE_HWINFO_SET = 18, /* Set HWinfo entry */
SPCODE_FW_LOADED = 19, /* Is application firmware loaded */
SPCODE_VERSIONS = 21, /* Report FW versions */
SPCODE_READ_SFF_EEPROM = 22, /* Read module EEPROM */
};
struct nfp_nsp_dma_buf {
__le32 chunk_cnt;
__le32 reserved[3];
struct {
__le32 size;
__le32 reserved;
__le64 addr;
} descs[];
};
static const struct {
int code;
const char *msg;
} nsp_errors[] = {
{ 6010, "could not map to phy for port" },
{ 6011, "not an allowed rate/lanes for port" },
{ 6012, "not an allowed rate/lanes for port" },
{ 6013, "high/low error, change other port first" },
{ 6014, "config not found in flash" },
};
struct nfp_nsp {
struct nfp_cpp *cpp;
struct nfp_resource *res;
struct {
u16 major;
u16 minor;
} ver;
/* Eth table config state */
bool modified;
unsigned int idx;
void *entries;
};
/**
* struct nfp_nsp_command_arg - NFP command argument structure
* @code: NFP SP Command Code
* @dma: @buf points to a host buffer, not NSP buffer
* @timeout_sec:Timeout value to wait for completion in seconds
* @option: NFP SP Command Argument
* @buf: NFP SP Buffer Address
* @error_cb: Callback for interpreting option if error occurred
* @error_quiet:Don't print command error/warning. Protocol errors are still
* logged.
*/
struct nfp_nsp_command_arg {
u16 code;
bool dma;
unsigned int timeout_sec;
u32 option;
u64 buf;
void (*error_cb)(struct nfp_nsp *state, u32 ret_val);
bool error_quiet;
};
/**
* struct nfp_nsp_command_buf_arg - NFP command with buffer argument structure
* @arg: NFP command argument structure
* @in_buf: Buffer with data for input
* @in_size: Size of @in_buf
* @out_buf: Buffer for output data
* @out_size: Size of @out_buf
*/
struct nfp_nsp_command_buf_arg {
struct nfp_nsp_command_arg arg;
const void *in_buf;
unsigned int in_size;
void *out_buf;
unsigned int out_size;
};
struct nfp_cpp *nfp_nsp_cpp(struct nfp_nsp *state)
{
return state->cpp;
}
bool nfp_nsp_config_modified(struct nfp_nsp *state)
{
return state->modified;
}
void nfp_nsp_config_set_modified(struct nfp_nsp *state, bool modified)
{
state->modified = modified;
}
void *nfp_nsp_config_entries(struct nfp_nsp *state)
{
return state->entries;
}
unsigned int nfp_nsp_config_idx(struct nfp_nsp *state)
{
return state->idx;
}
void
nfp_nsp_config_set_state(struct nfp_nsp *state, void *entries, unsigned int idx)
{
state->entries = entries;
state->idx = idx;
}
void nfp_nsp_config_clear_state(struct nfp_nsp *state)
{
state->entries = NULL;
state->idx = 0;
}
static void nfp_nsp_print_extended_error(struct nfp_nsp *state, u32 ret_val)
{
int i;
if (!ret_val)
return;
for (i = 0; i < ARRAY_SIZE(nsp_errors); i++)
if (ret_val == nsp_errors[i].code)
nfp_err(state->cpp, "err msg: %s\n", nsp_errors[i].msg);
}
static int nfp_nsp_check(struct nfp_nsp *state)
{
struct nfp_cpp *cpp = state->cpp;
u64 nsp_status, reg;
u32 nsp_cpp;
int err;
nsp_cpp = nfp_resource_cpp_id(state->res);
nsp_status = nfp_resource_address(state->res) + NSP_STATUS;
err = nfp_cpp_readq(cpp, nsp_cpp, nsp_status, &reg);
if (err < 0)
return err;
if (FIELD_GET(NSP_STATUS_MAGIC, reg) != NSP_MAGIC) {
nfp_err(cpp, "Cannot detect NFP Service Processor\n");
return -ENODEV;
}
state->ver.major = FIELD_GET(NSP_STATUS_MAJOR, reg);
state->ver.minor = FIELD_GET(NSP_STATUS_MINOR, reg);
if (state->ver.major != NSP_MAJOR) {
nfp_err(cpp, "Unsupported ABI %hu.%hu\n",
state->ver.major, state->ver.minor);
return -EINVAL;
}
if (state->ver.minor < NSP_MINOR) {
nfp_err(cpp, "ABI too old to support NIC operation (%u.%hu < %u.%u), please update the management FW on the flash\n",
NSP_MAJOR, state->ver.minor, NSP_MAJOR, NSP_MINOR);
return -EINVAL;
}
if (reg & NSP_STATUS_BUSY) {
nfp_err(cpp, "Service processor busy!\n");
return -EBUSY;
}
return 0;
}
/**
* nfp_nsp_open() - Prepare for communication and lock the NSP resource.
* @cpp: NFP CPP Handle
*/
struct nfp_nsp *nfp_nsp_open(struct nfp_cpp *cpp)
{
struct nfp_resource *res;
struct nfp_nsp *state;
int err;
res = nfp_resource_acquire(cpp, NFP_RESOURCE_NSP);
if (IS_ERR(res))
return (void *)res;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state) {
nfp_resource_release(res);
return ERR_PTR(-ENOMEM);
}
state->cpp = cpp;
state->res = res;
err = nfp_nsp_check(state);
if (err) {
nfp_nsp_close(state);
return ERR_PTR(err);
}
return state;
}
/**
* nfp_nsp_close() - Clean up and unlock the NSP resource.
* @state: NFP SP state
*/
void nfp_nsp_close(struct nfp_nsp *state)
{
nfp_resource_release(state->res);
kfree(state);
}
u16 nfp_nsp_get_abi_ver_major(struct nfp_nsp *state)
{
return state->ver.major;
}
u16 nfp_nsp_get_abi_ver_minor(struct nfp_nsp *state)
{
return state->ver.minor;
}
static int
nfp_nsp_wait_reg(struct nfp_cpp *cpp, u64 *reg, u32 nsp_cpp, u64 addr,
u64 mask, u64 val, u32 timeout_sec)
{
const unsigned long wait_until = jiffies + timeout_sec * HZ;
int err;
for (;;) {
const unsigned long start_time = jiffies;
err = nfp_cpp_readq(cpp, nsp_cpp, addr, reg);
if (err < 0)
return err;
if ((*reg & mask) == val)
return 0;
msleep(25);
if (time_after(start_time, wait_until))
return -ETIMEDOUT;
}
}
/**
* __nfp_nsp_command() - Execute a command on the NFP Service Processor
* @state: NFP SP state
* @arg: NFP command argument structure
*
* Return: 0 for success with no result
*
* positive value for NSP completion with a result code
*
* -EAGAIN if the NSP is not yet present
* -ENODEV if the NSP is not a supported model
* -EBUSY if the NSP is stuck
* -EINTR if interrupted while waiting for completion
* -ETIMEDOUT if the NSP took longer than @timeout_sec seconds to complete
*/
static int
__nfp_nsp_command(struct nfp_nsp *state, const struct nfp_nsp_command_arg *arg)
{
u64 reg, ret_val, nsp_base, nsp_buffer, nsp_status, nsp_command;
struct nfp_cpp *cpp = state->cpp;
u32 nsp_cpp;
int err;
nsp_cpp = nfp_resource_cpp_id(state->res);
nsp_base = nfp_resource_address(state->res);
nsp_status = nsp_base + NSP_STATUS;
nsp_command = nsp_base + NSP_COMMAND;
nsp_buffer = nsp_base + NSP_BUFFER;
err = nfp_nsp_check(state);
if (err)
return err;
err = nfp_cpp_writeq(cpp, nsp_cpp, nsp_buffer, arg->buf);
if (err < 0)
return err;
err = nfp_cpp_writeq(cpp, nsp_cpp, nsp_command,
FIELD_PREP(NSP_COMMAND_OPTION, arg->option) |
FIELD_PREP(NSP_COMMAND_CODE, arg->code) |
FIELD_PREP(NSP_COMMAND_DMA_BUF, arg->dma) |
FIELD_PREP(NSP_COMMAND_START, 1));
if (err < 0)
return err;
/* Wait for NSP_COMMAND_START to go to 0 */
err = nfp_nsp_wait_reg(cpp, &reg, nsp_cpp, nsp_command,
NSP_COMMAND_START, 0, NFP_NSP_TIMEOUT_DEFAULT);
if (err) {
nfp_err(cpp, "Error %d waiting for code 0x%04x to start\n",
err, arg->code);
return err;
}
/* Wait for NSP_STATUS_BUSY to go to 0 */
err = nfp_nsp_wait_reg(cpp, &reg, nsp_cpp, nsp_status, NSP_STATUS_BUSY,
0, arg->timeout_sec ?: NFP_NSP_TIMEOUT_DEFAULT);
if (err) {
nfp_err(cpp, "Error %d waiting for code 0x%04x to complete\n",
err, arg->code);
return err;
}
err = nfp_cpp_readq(cpp, nsp_cpp, nsp_command, &ret_val);
if (err < 0)
return err;
ret_val = FIELD_GET(NSP_COMMAND_OPTION, ret_val);
err = FIELD_GET(NSP_STATUS_RESULT, reg);
if (err) {
if (!arg->error_quiet)
nfp_warn(cpp, "Result (error) code set: %d (%d) command: %d\n",
-err, (int)ret_val, arg->code);
if (arg->error_cb)
arg->error_cb(state, ret_val);
else
nfp_nsp_print_extended_error(state, ret_val);
return -err;
}
return ret_val;
}
static int nfp_nsp_command(struct nfp_nsp *state, u16 code)
{
const struct nfp_nsp_command_arg arg = {
.code = code,
};
return __nfp_nsp_command(state, &arg);
}
static int
nfp_nsp_command_buf_def(struct nfp_nsp *nsp,
struct nfp_nsp_command_buf_arg *arg)
{
struct nfp_cpp *cpp = nsp->cpp;
u64 reg, cpp_buf;
int err, ret;
u32 cpp_id;
err = nfp_cpp_readq(cpp, nfp_resource_cpp_id(nsp->res),
nfp_resource_address(nsp->res) +
NSP_DFLT_BUFFER,
&reg);
if (err < 0)
return err;
cpp_id = FIELD_GET(NSP_DFLT_BUFFER_CPP, reg) << 8;
cpp_buf = FIELD_GET(NSP_DFLT_BUFFER_ADDRESS, reg);
if (arg->in_buf && arg->in_size) {
err = nfp_cpp_write(cpp, cpp_id, cpp_buf,
arg->in_buf, arg->in_size);
if (err < 0)
return err;
}
/* Zero out remaining part of the buffer */
if (arg->out_buf && arg->out_size && arg->out_size > arg->in_size) {
err = nfp_cpp_write(cpp, cpp_id, cpp_buf + arg->in_size,
arg->out_buf, arg->out_size - arg->in_size);
if (err < 0)
return err;
}
if (!FIELD_FIT(NSP_BUFFER_CPP, cpp_id >> 8) ||
!FIELD_FIT(NSP_BUFFER_ADDRESS, cpp_buf)) {
nfp_err(cpp, "Buffer out of reach %08x %016llx\n",
cpp_id, cpp_buf);
return -EINVAL;
}
arg->arg.buf = FIELD_PREP(NSP_BUFFER_CPP, cpp_id >> 8) |
FIELD_PREP(NSP_BUFFER_ADDRESS, cpp_buf);
ret = __nfp_nsp_command(nsp, &arg->arg);
if (ret < 0)
return ret;
if (arg->out_buf && arg->out_size) {
err = nfp_cpp_read(cpp, cpp_id, cpp_buf,
arg->out_buf, arg->out_size);
if (err < 0)
return err;
}
return ret;
}
static int
nfp_nsp_command_buf_dma_sg(struct nfp_nsp *nsp,
struct nfp_nsp_command_buf_arg *arg,
unsigned int max_size, unsigned int chunk_order,
unsigned int dma_order)
{
struct nfp_cpp *cpp = nsp->cpp;
struct nfp_nsp_dma_buf *desc;
struct {
dma_addr_t dma_addr;
unsigned long len;
void *chunk;
} *chunks;
size_t chunk_size, dma_size;
dma_addr_t dma_desc;
struct device *dev;
unsigned long off;
int i, ret, nseg;
size_t desc_sz;
chunk_size = BIT_ULL(chunk_order);
dma_size = BIT_ULL(dma_order);
nseg = DIV_ROUND_UP(max_size, chunk_size);
chunks = kzalloc(array_size(sizeof(*chunks), nseg), GFP_KERNEL);
if (!chunks)
return -ENOMEM;
off = 0;
ret = -ENOMEM;
for (i = 0; i < nseg; i++) {
unsigned long coff;
chunks[i].chunk = kmalloc(chunk_size,
GFP_KERNEL | __GFP_NOWARN);
if (!chunks[i].chunk)
goto exit_free_prev;
chunks[i].len = min_t(u64, chunk_size, max_size - off);
coff = 0;
if (arg->in_size > off) {
coff = min_t(u64, arg->in_size - off, chunk_size);
memcpy(chunks[i].chunk, arg->in_buf + off, coff);
}
memset(chunks[i].chunk + coff, 0, chunk_size - coff);
off += chunks[i].len;
}
dev = nfp_cpp_device(cpp)->parent;
for (i = 0; i < nseg; i++) {
dma_addr_t addr;
addr = dma_map_single(dev, chunks[i].chunk, chunks[i].len,
DMA_BIDIRECTIONAL);
chunks[i].dma_addr = addr;
ret = dma_mapping_error(dev, addr);
if (ret)
goto exit_unmap_prev;
if (WARN_ONCE(round_down(addr, dma_size) !=
round_down(addr + chunks[i].len - 1, dma_size),
"unaligned DMA address: %pad %lu %zd\n",
&addr, chunks[i].len, dma_size)) {
ret = -EFAULT;
i++;
goto exit_unmap_prev;
}
}
desc_sz = struct_size(desc, descs, nseg);
desc = kmalloc(desc_sz, GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto exit_unmap_all;
}
desc->chunk_cnt = cpu_to_le32(nseg);
for (i = 0; i < nseg; i++) {
desc->descs[i].size = cpu_to_le32(chunks[i].len);
desc->descs[i].addr = cpu_to_le64(chunks[i].dma_addr);
}
dma_desc = dma_map_single(dev, desc, desc_sz, DMA_TO_DEVICE);
ret = dma_mapping_error(dev, dma_desc);
if (ret)
goto exit_free_desc;
arg->arg.dma = true;
arg->arg.buf = dma_desc;
ret = __nfp_nsp_command(nsp, &arg->arg);
if (ret < 0)
goto exit_unmap_desc;
i = 0;
off = 0;
while (off < arg->out_size) {
unsigned int len;
len = min_t(u64, chunks[i].len, arg->out_size - off);
memcpy(arg->out_buf + off, chunks[i].chunk, len);
off += len;
i++;
}
exit_unmap_desc:
dma_unmap_single(dev, dma_desc, desc_sz, DMA_TO_DEVICE);
exit_free_desc:
kfree(desc);
exit_unmap_all:
i = nseg;
exit_unmap_prev:
while (--i >= 0)
dma_unmap_single(dev, chunks[i].dma_addr, chunks[i].len,
DMA_BIDIRECTIONAL);
i = nseg;
exit_free_prev:
while (--i >= 0)
kfree(chunks[i].chunk);
kfree(chunks);
if (ret < 0)
nfp_err(cpp, "NSP: SG DMA failed for command 0x%04x: %d (sz:%d cord:%d)\n",
arg->arg.code, ret, max_size, chunk_order);
return ret;
}
static int
nfp_nsp_command_buf_dma(struct nfp_nsp *nsp,
struct nfp_nsp_command_buf_arg *arg,
unsigned int max_size, unsigned int dma_order)
{
unsigned int chunk_order, buf_order;
struct nfp_cpp *cpp = nsp->cpp;
bool sg_ok;
u64 reg;
int err;
buf_order = order_base_2(roundup_pow_of_two(max_size));
err = nfp_cpp_readq(cpp, nfp_resource_cpp_id(nsp->res),
nfp_resource_address(nsp->res) + NFP_CAP_CMD_DMA_SG,
&reg);
if (err < 0)
return err;
sg_ok = reg & BIT_ULL(arg->arg.code - 1);
if (!sg_ok) {
if (buf_order > dma_order) {
nfp_err(cpp, "NSP: can't service non-SG DMA for command 0x%04x\n",
arg->arg.code);
return -ENOMEM;
}
chunk_order = buf_order;
} else {
chunk_order = min_t(unsigned int, dma_order, PAGE_SHIFT);
}
return nfp_nsp_command_buf_dma_sg(nsp, arg, max_size, chunk_order,
dma_order);
}
static int
nfp_nsp_command_buf(struct nfp_nsp *nsp, struct nfp_nsp_command_buf_arg *arg)
{
unsigned int dma_order, def_size, max_size;
struct nfp_cpp *cpp = nsp->cpp;
u64 reg;
int err;
if (nsp->ver.minor < 13) {
nfp_err(cpp, "NSP: Code 0x%04x with buffer not supported (ABI %hu.%hu)\n",
arg->arg.code, nsp->ver.major, nsp->ver.minor);
return -EOPNOTSUPP;
}
err = nfp_cpp_readq(cpp, nfp_resource_cpp_id(nsp->res),
nfp_resource_address(nsp->res) +
NSP_DFLT_BUFFER_CONFIG,
&reg);
if (err < 0)
return err;
/* Zero out undefined part of the out buffer */
if (arg->out_buf && arg->out_size && arg->out_size > arg->in_size)
memset(arg->out_buf, 0, arg->out_size - arg->in_size);
max_size = max(arg->in_size, arg->out_size);
def_size = FIELD_GET(NSP_DFLT_BUFFER_SIZE_MB, reg) * SZ_1M +
FIELD_GET(NSP_DFLT_BUFFER_SIZE_4KB, reg) * SZ_4K;
dma_order = FIELD_GET(NSP_DFLT_BUFFER_DMA_CHUNK_ORDER, reg);
if (def_size >= max_size) {
return nfp_nsp_command_buf_def(nsp, arg);
} else if (!dma_order) {
nfp_err(cpp, "NSP: default buffer too small for command 0x%04x (%u < %u)\n",
arg->arg.code, def_size, max_size);
return -EINVAL;
}
return nfp_nsp_command_buf_dma(nsp, arg, max_size, dma_order);
}
int nfp_nsp_wait(struct nfp_nsp *state)
{
const unsigned long wait_until = jiffies + NFP_NSP_TIMEOUT_BOOT * HZ;
int err;
nfp_dbg(state->cpp, "Waiting for NSP to respond (%u sec max).\n",
NFP_NSP_TIMEOUT_BOOT);
for (;;) {
const unsigned long start_time = jiffies;
err = nfp_nsp_command(state, SPCODE_NOOP);
if (err != -EAGAIN)
break;
if (msleep_interruptible(25)) {
err = -ERESTARTSYS;
break;
}
if (time_after(start_time, wait_until)) {
err = -ETIMEDOUT;
break;
}
}
if (err)
nfp_err(state->cpp, "NSP failed to respond %d\n", err);
return err;
}
int nfp_nsp_device_soft_reset(struct nfp_nsp *state)
{
return nfp_nsp_command(state, SPCODE_SOFT_RESET);
}
int nfp_nsp_mac_reinit(struct nfp_nsp *state)
{
return nfp_nsp_command(state, SPCODE_MAC_INIT);
}
static void nfp_nsp_load_fw_extended_msg(struct nfp_nsp *state, u32 ret_val)
{
static const char * const major_msg[] = {
/* 0 */ "Firmware from driver loaded",
/* 1 */ "Firmware from flash loaded",
/* 2 */ "Firmware loading failure",
};
static const char * const minor_msg[] = {
/* 0 */ "",
/* 1 */ "no named partition on flash",
/* 2 */ "error reading from flash",
/* 3 */ "can not deflate",
/* 4 */ "not a trusted file",
/* 5 */ "can not parse FW file",
/* 6 */ "MIP not found in FW file",
/* 7 */ "null firmware name in MIP",
/* 8 */ "FW version none",
/* 9 */ "FW build number none",
/* 10 */ "no FW selection policy HWInfo key found",
/* 11 */ "static FW selection policy",
/* 12 */ "FW version has precedence",
/* 13 */ "different FW application load requested",
/* 14 */ "development build",
};
unsigned int major, minor;
const char *level;
major = FIELD_GET(NFP_FW_LOAD_RET_MAJOR, ret_val);
minor = FIELD_GET(NFP_FW_LOAD_RET_MINOR, ret_val);
if (!nfp_nsp_has_stored_fw_load(state))
return;
/* Lower the message level in legacy case */
if (major == 0 && (minor == 0 || minor == 10))
level = KERN_DEBUG;
else if (major == 2)
level = KERN_ERR;
else
level = KERN_INFO;
if (major >= ARRAY_SIZE(major_msg))
nfp_printk(level, state->cpp, "FW loading status: %x\n",
ret_val);
else if (minor >= ARRAY_SIZE(minor_msg))
nfp_printk(level, state->cpp, "%s, reason code: %d\n",
major_msg[major], minor);
else
nfp_printk(level, state->cpp, "%s%c %s\n",
major_msg[major], minor ? ',' : '.',
minor_msg[minor]);
}
int nfp_nsp_load_fw(struct nfp_nsp *state, const struct firmware *fw)
{
struct nfp_nsp_command_buf_arg load_fw = {
{
.code = SPCODE_FW_LOAD,
.option = fw->size,
.error_cb = nfp_nsp_load_fw_extended_msg,
},
.in_buf = fw->data,
.in_size = fw->size,
};
int ret;
ret = nfp_nsp_command_buf(state, &load_fw);
if (ret < 0)
return ret;
nfp_nsp_load_fw_extended_msg(state, ret);
return 0;
}
int nfp_nsp_write_flash(struct nfp_nsp *state, const struct firmware *fw)
{
struct nfp_nsp_command_buf_arg write_flash = {
{
.code = SPCODE_NSP_WRITE_FLASH,
.option = fw->size,
.timeout_sec = 900,
},
.in_buf = fw->data,
.in_size = fw->size,
};
return nfp_nsp_command_buf(state, &write_flash);
}
int nfp_nsp_read_eth_table(struct nfp_nsp *state, void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg eth_rescan = {
{
.code = SPCODE_ETH_RESCAN,
.option = size,
},
.out_buf = buf,
.out_size = size,
};
return nfp_nsp_command_buf(state, &eth_rescan);
}
int nfp_nsp_write_eth_table(struct nfp_nsp *state,
const void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg eth_ctrl = {
{
.code = SPCODE_ETH_CONTROL,
.option = size,
},
.in_buf = buf,
.in_size = size,
};
return nfp_nsp_command_buf(state, &eth_ctrl);
}
int nfp_nsp_read_identify(struct nfp_nsp *state, void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg identify = {
{
.code = SPCODE_NSP_IDENTIFY,
.option = size,
},
.out_buf = buf,
.out_size = size,
};
return nfp_nsp_command_buf(state, &identify);
}
int nfp_nsp_read_sensors(struct nfp_nsp *state, unsigned int sensor_mask,
void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg sensors = {
{
.code = SPCODE_NSP_SENSORS,
.option = sensor_mask,
},
.out_buf = buf,
.out_size = size,
};
return nfp_nsp_command_buf(state, &sensors);
}
int nfp_nsp_load_stored_fw(struct nfp_nsp *state)
{
const struct nfp_nsp_command_arg arg = {
.code = SPCODE_FW_STORED,
.error_cb = nfp_nsp_load_fw_extended_msg,
};
int ret;
ret = __nfp_nsp_command(state, &arg);
if (ret < 0)
return ret;
nfp_nsp_load_fw_extended_msg(state, ret);
return 0;
}
static int
__nfp_nsp_hwinfo_lookup(struct nfp_nsp *state, void *buf, unsigned int size,
bool optional)
{
struct nfp_nsp_command_buf_arg hwinfo_lookup = {
{
.code = SPCODE_HWINFO_LOOKUP,
.option = size,
.error_quiet = optional,
},
.in_buf = buf,
.in_size = size,
.out_buf = buf,
.out_size = size,
};
return nfp_nsp_command_buf(state, &hwinfo_lookup);
}
int nfp_nsp_hwinfo_lookup(struct nfp_nsp *state, void *buf, unsigned int size)
{
int err;
size = min_t(u32, size, NFP_HWINFO_LOOKUP_SIZE);
err = __nfp_nsp_hwinfo_lookup(state, buf, size, false);
if (err)
return err;
if (strnlen(buf, size) == size) {
nfp_err(state->cpp, "NSP HWinfo value not NULL-terminated\n");
return -EINVAL;
}
return 0;
}
int nfp_nsp_hwinfo_lookup_optional(struct nfp_nsp *state, void *buf,
unsigned int size, const char *default_val)
{
int err;
/* Ensure that the default value is usable irrespective of whether
* it is actually going to be used.
*/
if (strnlen(default_val, size) == size)
return -EINVAL;
if (!nfp_nsp_has_hwinfo_lookup(state)) {
strcpy(buf, default_val);
return 0;
}
size = min_t(u32, size, NFP_HWINFO_LOOKUP_SIZE);
err = __nfp_nsp_hwinfo_lookup(state, buf, size, true);
if (err) {
if (err == -ENOENT) {
strcpy(buf, default_val);
return 0;
}
nfp_err(state->cpp, "NSP HWinfo lookup failed: %d\n", err);
return err;
}
if (strnlen(buf, size) == size) {
nfp_err(state->cpp, "NSP HWinfo value not NULL-terminated\n");
return -EINVAL;
}
return 0;
}
int nfp_nsp_hwinfo_set(struct nfp_nsp *state, void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg hwinfo_set = {
{
.code = SPCODE_HWINFO_SET,
.option = size,
},
.in_buf = buf,
.in_size = size,
};
return nfp_nsp_command_buf(state, &hwinfo_set);
}
int nfp_nsp_fw_loaded(struct nfp_nsp *state)
{
const struct nfp_nsp_command_arg arg = {
.code = SPCODE_FW_LOADED,
};
return __nfp_nsp_command(state, &arg);
}
int nfp_nsp_versions(struct nfp_nsp *state, void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg versions = {
{
.code = SPCODE_VERSIONS,
.option = min_t(u32, size, NFP_VERSIONS_SIZE),
},
.out_buf = buf,
.out_size = min_t(u32, size, NFP_VERSIONS_SIZE),
};
return nfp_nsp_command_buf(state, &versions);
}
const char *nfp_nsp_versions_get(enum nfp_nsp_versions id, bool flash,
const u8 *buf, unsigned int size)
{
static const u32 id2off[] = {
[NFP_VERSIONS_BSP] = NFP_VERSIONS_BSP_OFF,
[NFP_VERSIONS_CPLD] = NFP_VERSIONS_CPLD_OFF,
[NFP_VERSIONS_APP] = NFP_VERSIONS_APP_OFF,
[NFP_VERSIONS_BUNDLE] = NFP_VERSIONS_BUNDLE_OFF,
[NFP_VERSIONS_UNDI] = NFP_VERSIONS_UNDI_OFF,
[NFP_VERSIONS_NCSI] = NFP_VERSIONS_NCSI_OFF,
[NFP_VERSIONS_CFGR] = NFP_VERSIONS_CFGR_OFF,
};
unsigned int field, buf_field_cnt, buf_off;
if (id >= ARRAY_SIZE(id2off) || !id2off[id])
return ERR_PTR(-EINVAL);
field = id * 2 + flash;
buf_field_cnt = get_unaligned_le16(buf);
if (buf_field_cnt <= field)
return ERR_PTR(-ENOENT);
buf_off = get_unaligned_le16(buf + id2off[id] + flash * 2);
if (!buf_off)
return ERR_PTR(-ENOENT);
if (buf_off >= size)
return ERR_PTR(-EINVAL);
if (strnlen(&buf[buf_off], size - buf_off) == size - buf_off)
return ERR_PTR(-EINVAL);
return (const char *)&buf[buf_off];
}
static int
__nfp_nsp_module_eeprom(struct nfp_nsp *state, void *buf, unsigned int size)
{
struct nfp_nsp_command_buf_arg module_eeprom = {
{
.code = SPCODE_READ_SFF_EEPROM,
.option = size,
},
.in_buf = buf,
.in_size = size,
.out_buf = buf,
.out_size = size,
};
return nfp_nsp_command_buf(state, &module_eeprom);
}
int nfp_nsp_read_module_eeprom(struct nfp_nsp *state, int eth_index,
unsigned int offset, void *data,
unsigned int len, unsigned int *read_len)
{
struct eeprom_buf {
u8 metalen;
__le16 length;
__le16 offset;
__le16 readlen;
u8 eth_index;
u8 data[0];
} __packed *buf;
int bufsz, ret;
BUILD_BUG_ON(offsetof(struct eeprom_buf, data) % 8);
/* Buffer must be large enough and rounded to the next block size. */
bufsz = struct_size(buf, data, round_up(len, NSP_SFF_EEPROM_BLOCK_LEN));
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf)
return -ENOMEM;
buf->metalen =
offsetof(struct eeprom_buf, data) / NSP_SFF_EEPROM_BLOCK_LEN;
buf->length = cpu_to_le16(len);
buf->offset = cpu_to_le16(offset);
buf->eth_index = eth_index;
ret = __nfp_nsp_module_eeprom(state, buf, bufsz);
*read_len = min_t(unsigned int, len, le16_to_cpu(buf->readlen));
if (*read_len)
memcpy(data, buf->data, *read_len);
if (!ret && *read_len < len)
ret = -EIO;
kfree(buf);
return ret;
}